What is generating the benthic nepheloid layers?

How ubiquitous, variable or persistent are nepheloid layers? What is the main process generating these “clouds at the bottom of the sea”? Gardner and co-workers (2017, see reference below) explore these two critical questions, with a focus on the western North Atlantic for which numerous time series and survey data exist. They piece together a detailed review of the mechanisms and provide important new insights into the creation, persistence, and decay of nepheloid layers, a major issue for the geochemistry of particle-reactive elements. Their main results are: Deep western boundary currents are too weak to create benthic storms and therefore to generate intense nepheloid layers; benthic storms are created primarily by deep cyclones beneath Gulf Stream meanders; benthic storms erode the seafloor and maintain the benthic nepheloid layer; and finally, benthic nepheloid layers are weak to non-existent in areas of low eddy kinetic energy.

17 Gardner

Figure 1: Contours of integrated benthic particle load (red lines, in μg cm− 2) and abyssal eddy kinetic energy (EKE, dashed green lines, in cm2 s− 2). Numbers by stars and triangles are related to the mean time-series particle concentration and standard deviation of particle concentration (in parentheses). Click here to view the figure larger.

17 Gardner2

Figure 2: Map of surface EKE based on satellite observations during 2002–2006 (Dixon et al., 2011). Time-series stations are indicated. Click here to view the figure larger.

References:

Gardner, W. D., Tucholke, B. E., Richardson, M. J., & Biscaye, P. E. (2017). Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic. Marine Geology. DOI:10.1016/j.margeo.2016.12.012 Open Access

K.W. Dixon, T.L. Delworth, A.J. Rosati, W. Anderson, A. Adcroft, V. Balaji, R. Benson, S.M. Griffies, H.-C. Lee, R.C. Pacanowski, G.A. Vecchi, A.T. Wittenberg, F. Zeng, R. Zhang Ocean circulation features of the GFDL CM2.6 & CM2.5 high-resolution global coupled climate models. WCRP Open Science Conference, October 2011, Denver, Colorado (2011)

Latest highlights

Overlooked riverine contributions of dissolved neodymium and hafnium to the Amazon estuary and oceans

Xu and colleagues investigated the isotopic composition of dissolved neodymium and hafnium along the entire salinity gradient of the Amazon estuary.

Pulling back the veil on reversible scavenging of lead

This work further contains the role that reversible scavenging may play in the cycling of lead in the ocean, an ever-evolving global experiment where lead contamination can be tracked in real-time.

Extremely high radioactive levels in the manganese nodules

Volz and co-authors demonstrate that radioisotopes in the manganese nodules mostly exceed exempt activity levels…

The North Pacific Ocean, a key actor for the zinc oceanic cycle

Sieber and his colleagues lift the veil on some of the mechanisms that control the behavior of zinc in the Pacific Ocean, and more globally.

Rechercher