What is generating the benthic nepheloid layers?

How ubiquitous, variable or persistent are nepheloid layers? What is the main process generating these “clouds at the bottom of the sea”? Gardner and co-workers (2017, see reference below) explore these two critical questions, with a focus on the western North Atlantic for which numerous time series and survey data exist. They piece together a detailed review of the mechanisms and provide important new insights into the creation, persistence, and decay of nepheloid layers, a major issue for the geochemistry of particle-reactive elements. Their main results are: Deep western boundary currents are too weak to create benthic storms and therefore to generate intense nepheloid layers; benthic storms are created primarily by deep cyclones beneath Gulf Stream meanders; benthic storms erode the seafloor and maintain the benthic nepheloid layer; and finally, benthic nepheloid layers are weak to non-existent in areas of low eddy kinetic energy.

17 Gardner

Figure 1: Contours of integrated benthic particle load (red lines, in μg cm− 2) and abyssal eddy kinetic energy (EKE, dashed green lines, in cm2 s− 2). Numbers by stars and triangles are related to the mean time-series particle concentration and standard deviation of particle concentration (in parentheses). Click here to view the figure larger.

17 Gardner2

Figure 2: Map of surface EKE based on satellite observations during 2002–2006 (Dixon et al., 2011). Time-series stations are indicated. Click here to view the figure larger.

References:

Gardner, W. D., Tucholke, B. E., Richardson, M. J., & Biscaye, P. E. (2017). Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic. Marine Geology. DOI:10.1016/j.margeo.2016.12.012 Open Access

K.W. Dixon, T.L. Delworth, A.J. Rosati, W. Anderson, A. Adcroft, V. Balaji, R. Benson, S.M. Griffies, H.-C. Lee, R.C. Pacanowski, G.A. Vecchi, A.T. Wittenberg, F. Zeng, R. Zhang Ocean circulation features of the GFDL CM2.6 & CM2.5 high-resolution global coupled climate models. WCRP Open Science Conference, October 2011, Denver, Colorado (2011)

Latest highlights

Major controls on the fate of dissolved manganese in the northeastern Indian Ocean

Malla and Singh investigated the key factors controlling dissolved manganese in the northeastern Indian Ocean.

An original approach to assess the particulate trace metal concentrations in seawater

Sohrin and co-workers propose defining particulate trace metal as the difference between total dissolvable and dissolved metals after a long storage of filtered and unfiltered acidified seawater.

Constraining aerosol deposition over the global ocean by the cosmogenic beryllium-7

He and co-workers propose a global estimate of aerosol deposition onto the ocean using the cosmogenic radionuclide beryllium-7.

Oceanic lead concentrations and isotopes mapped using explainable machine learning

Using three machine learning models, Olivelli and her colleagues generated global climatologies of lead concentrations and isotopes…

Rechercher