What controls hydrothermal plume transport of iron over 4000 km in the deep Pacific Ocean?

The striking extension of the dissolved iron and manganese plumes over more than 4000 km from their hydrothermal sources along the US GEOTRACES East Pacific Zonal Transect (EPZT) cruise (GP16) has challenged our understanding of these element cycles (Resing et al., 2015 see GEOTRACES science highlight).

Fitzsimmons and co-workers (2017, see reference below) analysed the particulate iron and manganese (Mn) in the same plume and showed that they also exceed background concentrations, even 4,000 km from the vent source, despite anticipated gravitational settling losses. Both dissolved and particulate Fe plumes deepen by more than 350 m relative to the conservative helium-3 (3He) one, while the Mn plumes do not show such descent.

Based on Fe speciation and isotope data, the authors suggest that dissolved iron fluxes and geospatial positioning may depend on the balance between stabilization in the dissolved phase by organic ligands and the reversibility of exchange onto sinking particles.

17 Fitzsimmons l

Figure:  Interpolated concentrations and station map along the US GEOTRACES EPZT (GP16) section. a, Map of the station locations (colours corresponds to bathymetry; green hues shallower) b, Excess 3He concentrations in fmol kg−1. c, Dissolved Fe concentrations (<0.2 µm, in nM). d, Dissolved Mn concentrations (<0.2 µm, in nM). e, Particulate Fe (>0.45µm, in nM). f, Particulate Mn (>0.45µm, in pM). The black reference line at 2,500m in each panel highlights  the deepening of the Fe plumes. Ocean Data View was used to carry out the simulations. Click here to view the figure larger.

References:

Fitzsimmons, J. N., John, S. G., Marsay, C. M., Hoffman, C. L., Nicholas, S. L., Toner, B. M., German, C. R., Sherrell, R. M. (2017). Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nature Geoscience. DOI: 10.1038/ngeo2900

Resing, J. A., Sedwick, P. N., German, C. R., Jenkins, W. J., Moffett, J. W., Sohst, B. M., & Tagliabue, A. (2015). Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature, 523(7559), 200–203. DOI: 10.1038/nature14577

Latest highlights

Science Highlights

Retreat of large marine-terminating glaciers may increase iron supply to surface waters

The findings demonstrate that glacial retreat and loss of ice-shelves may potentially result in increases in dissolved Fe supply to surface waters downstream of large marine terminating glaciers in future.

31.05.2021

Science Highlights

When lateral advective transport explains between 80 and 100% of the dissolved aluminium distribution

This study evidence that the effect of advection cannot be neglected in areas where a conjunction of significant horizontal dissolved aluminium gradients and significant horizontal currents is found.

26.05.2021

Science Highlights

Variable dissolution rates and fates of lithogenic tracers at the air-sea interface

Roy-Barman and co-authors established the dissolution rates from Saharan dust reaching Mediterranean seawater.

21.05.2021

Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of Nd isotopes as a useful tracer of ocean circulation.

05.05.2021

Rechercher