When direct mapping of diatoms reveals unexpected fate of trace metals in the twilight zone

Twining and co-authors (2014, see reference below) used synchrotron x-ray fluorescence mapping to measure macronutrients such phosphorus (P), sulphur (S), and silicon (Si), and also trace metals like iron (Fe), nickel (Ni) and zinc (Zn), in individual cells of a diatom specie during a spring bloom off New Zealand. They clearly show that P, S, Zn and Ni are released faster than Fe and Si from sinking cells in the upper 200 m. Although the metals are co-located with P and S at the surface, the scheme changes deeper. The relationships with P and S become weak while an association of Fe with Si appears, suggesting re-adsorption when particles are settling. Exciting results revealing that ratios of dissolved Fe to macronutrients in the water column likely underestimate stoichiometries in sinking cells.

14 twining l
Figure. Element maps (P, S, Fe ,and Zn) and associated scatterplots of Fe and S concentrations in each pixel of the scans for two diatom cells collected from 30m or 200m following a spring bloom off New Zealand.  The scatterplots show that Fe and S are spatially decoupled from each other when the diatom cells degrade as they sink through the upper water column.  S is lost more readily from the cells, while Fe appears to be retained or is re-scavenged.  Scale bar indicates 10um for each cell.  Adapted from Twining et al. (2014). Click here to view the figure larger.

 

Reference:

Twining, B. S., Nodder, S. D., King, A. L., Hutchins, D. A., LeCleir, G. R., DeBruyn, Jennifer M.; Maas, E. W., Vogt, S., Wilhelm, S. W., Boyd, P. W. (2014). Differential remineralization of major and trace elements in sinking diatoms. Limnology and Oceanography, 59(3), 689–704. doi:10.4319/lo.2014.59.3.0689 Click here to view the paper.

Latest highlights

Overlooked riverine contributions of dissolved neodymium and hafnium to the Amazon estuary and oceans

Xu and colleagues investigated the isotopic composition of dissolved neodymium and hafnium along the entire salinity gradient of the Amazon estuary.

Pulling back the veil on reversible scavenging of lead

This work further contains the role that reversible scavenging may play in the cycling of lead in the ocean, an ever-evolving global experiment where lead contamination can be tracked in real-time.

Extremely high radioactive levels in the manganese nodules

Volz and co-authors demonstrate that radioisotopes in the manganese nodules mostly exceed exempt activity levels…

The North Pacific Ocean, a key actor for the zinc oceanic cycle

Sieber and his colleagues lift the veil on some of the mechanisms that control the behavior of zinc in the Pacific Ocean, and more globally.

Rechercher