When a multi-parameter end-member mixing model allows a quantitative deconvolution of the dissolved rare earth elements behaviour

The dissolved Rare Earth Elements (dREE) data discussed by Zheng and co-workers (2016, see reference below) have been collected along a full depth section at 12°S in the South Atlantic Ocean, using a new high-precision analytical protocol (Zheng et al., 2015).

Results show that more than 75% of the dREE concentrations are preformed, explaining the strong correlation often observed in deep waters between dREEs and dissolved silicon (Si).

Minor addition of up to 10% of dREE in Antarctic Bottom Water (AABW) in the deep Brazil Basin is observed, reflecting particle remineralization, while dREE addition of up to 25% is found at 1500 m and below 4000 m in the Angola Basin near the continent–ocean interface. These latest inputs are divided in 2 plumes: based on evidence from cerium anomalies, the shallow plume is attributed to release of dREEs from dissolution of sedimentary iron oxides on the continental margin, and the deep one to remineralization of calcite.

…if you wish to know more about the process identification, don’t hesitate to read the paper!!!

16 Zheng l

Figure: The multi-parameter mixing model reveals that >75% of dissolved REEs in the deep South Atlantic along ~12ºS is explained by mixing of different water masses (“preformed”), and significant (up to 25%) non-preformed REEs occur at ~1500 m and below 4000 m at the ocean-continent interface in the Angola Basin (eastern section) resulting from different REE sources. Click here to view the figure larger.

References:

Zheng, X.-Y., Yang, J., & Henderson, G. M. (2015). A robust procedure for high-precision determination of rare earth element concentrations in seawater. Geostandard and Geoanalytical Research, 39, 277-292. doi:10.1111/j.1751-908X.2014.00307.x.

Zheng, X.-Y., Plancherel, Y., Saito, M. A., Scott, P. M., & Henderson, G. M. (2016). Rare earth elements (REEs) in the tropical South Atlantic and quantitative deconvolution of their non-conservative behaviour. Geochimica et Cosmochimica Acta, 177, 217–237. doi:10.1016/j.gca.2016.01.018.

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Rechercher