What drives the silicon budget in the Bay of Bengal? The isotope composition clues…

The first data set of dissolved silicon isotope composition (δ30Si) along with concentrations (DSi) in seawater of the northern Indian Ocean is presented from the Bay of Bengal (BoB) region.

Elevated Si (>3 µmol/kg) in surface waters of coastal stations indicates the continental supply, whereas a spike of Si (~30 µmol/kg) and a salinity maxima at depth 60 m of the southernmost station hint at intrusion of the Arabian Sea High Salinity waters. In the central bay, higher δ30Si in surface waters indicates greater utilisation of the available Si via diatom production. DSi and δ30Si in surface waters of the BoB vary dramatically in response to the Si supply and its consumption through biological production.

Modelling δ30Si in the deep/bottom waters of the BoB hints at dissolution of diatoms rather than lithogenic clays at/near the sediment­–water interface as the main cause of the elevated Si concentrations in the bay.

15 SantinderSingh l
Figure. Depth profiles of dissolved Si concentrations (left panel) and δ30Si (right panel) are shown for the coastal stations 0814–0820 (upper panel) and open ocean stations 0806–0813 (lower panel). Locations of coastal and open ocean stations are also given. Click here to view the figure larger.

 

Reference:

Singh, S.P., Singh, S.K., Bhushan, R., Rai, V.K., 2015. Dissolved silicon and its isotopes in the water column of the Bay of Bengal: Internal cycling versus lateral transport. Geochimica et Cosmochimica Acta 151, 172-191. doi:10.1016/j.gca.2014.12.019. Click here to access the paper.

Latest highlights

Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of Nd isotopes as a useful tracer of ocean circulation.

05.05.2021

Science Highlights

Neodymium concentrations and isotopes help disentangling Siberian river influences on the Arctic Ocean

Paffrath and co-autors followed the relative contributions of the main Siberian rivers to the waters of the Transpolar Drift using neodymium parameters.

Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of 2 increase over previous estimates having important implications for the global silicon cycle.

04.05.2021

Science Highlights

Manganese: a surprising co-limiting factor of phytoplankton growth in the Southern Ocean

One of the main consequences of this work is that manganese should be included in ocean-climate models, more particularly to improve the accuracy of their predictions in this area.

Rechercher