Welcome to the first Korean participation in GEOTRACES

Thanks to the newly launched research vessel (R/V) Isabu of the Korea Institute of Ocean Science and Technology (KIOST), and the acquisition of a contamination-free PRISTINE (NIOZ, NL) ultraclean seawater sampling system for trace elements, the Korean marine geochemists are pleased to published their first reliable trace metal (TM) results. Two cruises conducted in the Indian Ocean together with an intercalibration conducted at a GEOTRACES cross over station allowed them to assess their data quality. Thanks to these very positive results, researchers from KIOST and other academic institutes of Korea are currently conducting and planning R/V Isabu-based long-term research in offshore areas (Korean marginal seas) and the open ocean. Welcome to GEOTRACES!

19 Kim
 A) Photographs of operating the PRISTINE ultra-clean sampler at sea and of subsampling (Upper left). B) Sampling station in the Indian Ocean in Apr. 2018 (yellow dots of lower left). Yellow star (station 19) indicates the GEOTRACES crossover station (69.54°E–5.16°S) where samples were also collected in 2017. Yellow dotted arrow line denotes the cruise track. C) Contour maps of some dissolved trace element along the western Indian Oceans (60°E and 68°S). The direction of contour (left to right) is the same as the cruise track in Fig. B. Modified from Ocean Science Journal.


Kim, S. H., Ra, K., Kim, K.-T., Jeong, H., Lee, J., Kang, D.-J., Rho, T., Kim, I. (2019). R/V Isabu-Based First Ultraclean Seawater Sampling for Ocean Trace Elements in Korea. Ocean Science Journal, 1–12. https://doi.org/10.1007/s12601-019-0030-x

Latest highlights

Science Highlights

Deep sea lithogenic weathering a source of iron colloids for the ocean

Homoky and co-workers determined the isotope composition of dissolved iron profiles in shallow surface sediments of the South Atlantic Uruguayan margin…


Science Highlights

Adding external sources allow a better simulation of the oceanic rare earth elements cycles

Oka and colleagues demonstrate that the global distribution of REE can be reproduced by considering the internal cycle associated with reversible scavenging and external REEs inputs around continental regions.


Science Highlights

First direct measurements of luxury iron uptake in natural phytoplankton communities: surprising results!

This study demonstrates the importance of biology and ecology to understanding iron biogeochemistry.


Science Highlights

Air-sea gas disequilibrium drove deoxygenation of the deep ice-age ocean

This study provides one of the first mechanistic explanations for Last Glacial Maximum deep ocean deoxygenation.