Water mass circulation and weathering inputs in the Labrador Sea based on coupled hafnium-neodymium isotope compositions and rare earth element distributions

Filippova and co-authors (2017, see reference below) show distinct water mass signatures in the Labrador Sea revealed by combined dissolved hafnium (Hf) and neodymium (Nd) isotope compositions and REE distribution patterns along the AR7W transect in May 2013.

The new data show that in a semi-enclosed basin such as the Labrador Sea, the radiogenic Hf isotope signatures can serve as a highly sensitive tracer of water mass mixing processes given that they allow distinction of particular water masses that do not differ in their Nd isotope compositions. Based on the new data, the authors suggest that the residence time of Hf in the Labrador Sea can only be on the order of decades in order to sustain the observed variability. The high sensitivity of Hf isotopes to decadal ocean circulation changes in the Labrador Sea suggests a potential prospect for their application in other restricted basins with similar geological settings and pronounced short-term hydrographic variability.

17 Filippova l

17 Filipovafig2Figures: (top) Schematic map of the study area. Blue arrows represent cold deep currents and red arrows denote warm surface currents. Red dots indicate the positions of the stations occupied during CCGS Hudson Cruise 2013. A schematic representation of the geology of the surrounding landmasses is shown and includes average ɛHf and ɛNd values of the rocks. Please click here to view the figure larger. (bottom) Water masses distribution versus depth in the Labrador Sea based on their ɛNd (A) and ɛHf (B) signatures. Please click here to view the figure larger.

Reference:

Filippova, A., Frank, M., Kienast, M., Rickli, J., Hathorne, E., Yashayaev, I.M., and Böning, P. (2017): Water mass circulation and weathering inputs in the Labrador Sea based on coupled Hf-Nd isotope compositions and rare earth element distributions.- Geochimica et Cosmochimica Acta 199, 164-184. DOI: 10.1016/j.gca.2016.11.024

Latest highlights

Deep-sea mining, dewatering waste, accidental plumes and their potential consequences on trace metal fates in the North Pacific Ocean

Xiang and his colleagues conducted laboratory incubation experiments that simulate mining discharge into anoxic waters.

Biogeochemical behaviours of barium and radium-226 in the Pacific Ocean

Barium and radium-226 are not just proxies for nutrients and ocean circulation but are themselves marine biogeochemical tracers…

Intrigued by Rare Earth Elements and neodymium isotopes? A review for the curious

Vanessa Hatje and a group of Rare Earth Element (REE) specialists propose an exhaustive review on the behaviour of REE.

North-South section of bioactive cadmium, nickel, zinc, copper and iron along GEOTRACES transect GP19 in the Pacific Ocean

Zheng and his colleagues propose the first full sections of the simultaneous dissolved distributions of five nutrient-type trace metals in the western South Pacific Ocean.

Rechercher