Using chromium isotopes to reconstruct the oxygenation history of the oceans is challenged by modern data

Analyses of seawater chromium (Cr) concentrations and isotopes in diverse marine environments (Arctic, Pacific, and Atlantic Oceans) reveal a strong correlation between Cr isotope composition (δ53Cr) and Cr concentration. High δ53Cr values and low Cr concentration reflect losses of isotopically light Cr in neritic environments. Contrastingly, open ocean waters with low δ53Cr values and high Cr concentration are hypothesized to reflect the addition of seawater-derived Cr released from marine sediments or settling particles. Although reductive removal of Cr in oxygen minimum zones (OMZs) may explain low Cr concentrations in subsurface north Pacific waters, the heterogeneity in δ53Cr values in the modern (oxic) ocean entails that redox cycling of Cr isotopes in the ocean should be considered in future research.

16 Scheiderich lFigure: Correlation between chromium concentration (as ln[Cr]) and δ53Cr (‰) illustrates that samples from several locations around the world plot on a line that is consistent with closed-system Raleigh fractionation. This fractionation is probably the result of reduction of Cr(VI) is shallow and surface waters, and oxygen minimum zones, and possible reoxidation of Cr(III) at depth; observationally, Cr is “added” at depth, resulting in higher concentrations and lower δ53Cr values, and is “removed” in the surface, resulting in lower concentrations and higher d53Cr values. Click here to view the figure larger.

Reference:

Scheiderich, K., Amini, M., Holmden, C., & Francois, R. (2015). Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth and Planetary Science Letters, 423, 87–97. doi:10.1016/j.epsl.2015.04.030

Latest highlights

Iron limitation also affects the twilight zone

Li and co-workers established the distribution and uptake of siderophores along the Pacific meridional section (GP15 GEOTRACES cruise)…

Two papers describe findings on Rare Earth Elements in the North Atlantic Ocean (GEOVIDE cruise)

Lagarde and co-authors investigated the Rare Earth Element cycle along the GA01 transect.

Deep-sea mining, dewatering waste, accidental plumes and their potential consequences on trace metal fates in the North Pacific Ocean

Xiang and his colleagues conducted laboratory incubation experiments that simulate mining discharge into anoxic waters.

Biogeochemical behaviours of barium and radium-226 in the Pacific Ocean

Barium and radium-226 are not just proxies for nutrients and ocean circulation but are themselves marine biogeochemical tracers…

Rechercher