Using chromium isotopes to reconstruct the oxygenation history of the oceans is challenged by modern data

Analyses of seawater chromium (Cr) concentrations and isotopes in diverse marine environments (Arctic, Pacific, and Atlantic Oceans) reveal a strong correlation between Cr isotope composition (δ53Cr) and Cr concentration. High δ53Cr values and low Cr concentration reflect losses of isotopically light Cr in neritic environments. Contrastingly, open ocean waters with low δ53Cr values and high Cr concentration are hypothesized to reflect the addition of seawater-derived Cr released from marine sediments or settling particles. Although reductive removal of Cr in oxygen minimum zones (OMZs) may explain low Cr concentrations in subsurface north Pacific waters, the heterogeneity in δ53Cr values in the modern (oxic) ocean entails that redox cycling of Cr isotopes in the ocean should be considered in future research.

16 Scheiderich lFigure: Correlation between chromium concentration (as ln[Cr]) and δ53Cr (‰) illustrates that samples from several locations around the world plot on a line that is consistent with closed-system Raleigh fractionation. This fractionation is probably the result of reduction of Cr(VI) is shallow and surface waters, and oxygen minimum zones, and possible reoxidation of Cr(III) at depth; observationally, Cr is “added” at depth, resulting in higher concentrations and lower δ53Cr values, and is “removed” in the surface, resulting in lower concentrations and higher d53Cr values. Click here to view the figure larger.

Reference:

Scheiderich, K., Amini, M., Holmden, C., & Francois, R. (2015). Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth and Planetary Science Letters, 423, 87–97. doi:10.1016/j.epsl.2015.04.030

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Rechercher