Using chromium isotopes to reconstruct the oxygenation history of the oceans is challenged by modern data

Analyses of seawater chromium (Cr) concentrations and isotopes in diverse marine environments (Arctic, Pacific, and Atlantic Oceans) reveal a strong correlation between Cr isotope composition (δ53Cr) and Cr concentration. High δ53Cr values and low Cr concentration reflect losses of isotopically light Cr in neritic environments. Contrastingly, open ocean waters with low δ53Cr values and high Cr concentration are hypothesized to reflect the addition of seawater-derived Cr released from marine sediments or settling particles. Although reductive removal of Cr in oxygen minimum zones (OMZs) may explain low Cr concentrations in subsurface north Pacific waters, the heterogeneity in δ53Cr values in the modern (oxic) ocean entails that redox cycling of Cr isotopes in the ocean should be considered in future research.

16 Scheiderich lFigure: Correlation between chromium concentration (as ln[Cr]) and δ53Cr (‰) illustrates that samples from several locations around the world plot on a line that is consistent with closed-system Raleigh fractionation. This fractionation is probably the result of reduction of Cr(VI) is shallow and surface waters, and oxygen minimum zones, and possible reoxidation of Cr(III) at depth; observationally, Cr is “added” at depth, resulting in higher concentrations and lower δ53Cr values, and is “removed” in the surface, resulting in lower concentrations and higher d53Cr values. Click here to view the figure larger.

Reference:

Scheiderich, K., Amini, M., Holmden, C., & Francois, R. (2015). Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth and Planetary Science Letters, 423, 87–97. doi:10.1016/j.epsl.2015.04.030

Latest highlights

Science Highlights

Tracing dust deposition with aluminium and silicate at a resolution never reached before

Benaltabet and his colleagues propose a study of the dissolved aluminium and silicate fate in the Gulf of Aqaba (Red Sea).

24.01.2023

Science Highlights

Actinium-227 distribution traces at least three processes in the North Atlantic Ocean

Le Roy and colleagues report an oceanic section of Actinium-227 in the North Atlantic Ocean.

23.01.2023

Science Highlights

Do you want to know more about iron and its isotopes? This review is for you!

Authors present a comprehensive review of iron and iron isotope sources, internal cycling, and sinks in the ocean.

17.01.2023

Science Highlights

Different fates of four poorly soluble trace elements in the Pacific Ocean

Zheng and co-authors present the full-depth distributions of aluminum, lead, manganese and copper in the western South Pacific.

24.11.2022

Rechercher