Unprecedented set of dissolved manganese data in the North Atlantic Ocean (US GEOTRACES cruise)

Manganese (Mn) is an essential nutrient for biological growth. In the ocean, manganese distribution is sensitive to several processes: redox conditions, photochemistry, biological activity, abiotic scavenging, and also eolian, hydrothermal and sedimentary sources. All of them are conditioning the concentration of dissolved Mn in the ocean vertical profiles as shown in the east-west ocean section proposed by Wu and co-workers across the Subtropical North Atlantic Ocean (see figure below).

Their simple model calculation suggests that the main actors determining the distribution are:

  • In the surface waters (0-40m): eolian Mn(II) deposition and in-situ photochemical reduction of dioxide of manganese (MnO2).
  • Below the mixed layer (40-200m): the intensity of sunlight available for in-situ MnO2 photochemical reduction.
  • Between 200 and 700 m: regeneration preformed Mn in the source water and lateral inputs from hydrothermal and sedimentary sources.
  • Below 700 m: lateral inputs from hydrothermal and sedimentary sources become predominant.

2014 Wu l

Figure. Vertical distribution of manganese (Mn) along a section across Subtropical North Atlantic. Warm colours (red, orange, etc.) indicate high concentrations. Click here to view the figure larger.

Reference:

Wu, J., Roshan, S., & Chen, G. (2014). The distribution of dissolved manganese in the tropical–subtropical North Atlantic during US GEOTRACES 2010 and 2011 cruises. Marine Chemistry, 166, 9–24. doi:10.1016/j.marchem.2014.08.007. Click here to access the paper.

Latest highlights

Science Highlights

Controls of cadmium-phosphate systematic unraveled by Neural Networks and Ocean Circulation Inverse Model

Roshan and DeVries explore the similarities and contrasts between oceanic cadmium and phosphate cycles using an Artificial Neural Network mapping technique and Ocean Circulation Inverse Model.

23.06.2021

Science Highlights

Retreat of large marine-terminating glaciers may increase iron supply to surface waters

The findings demonstrate that glacial retreat and loss of ice-shelves may potentially result in increases in dissolved Fe supply to surface waters downstream of large marine terminating glaciers in future.

31.05.2021

Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of two increase over previous estimates having important implications for the global silicon cycle.

21.05.2021

Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of neodymium isotopes as a useful tracer of ocean circulation.

05.05.2021

Rechercher