Unprecedented iron delivery from the Congo River margin to the South Atlantic Gyre

The Congo River is the world’s second largest river by discharge volume and the only major river discharging into an eastern boundary region. Despite of its size, the Congo River plume and its influence on trace element cycles and ocean primary productivity is poorly constrained. During GEOTRACES cruise GA08, Vieira and co-workers (2020, see reference below) used radium isotopes to demonstrate that a combination of high river discharge, coastal sediments or submarine groundwater discharge make the Congo the most significant riverine source of iron (Fe) to the South Atlantic. Rapid off-shelf transport close to the equator results in the delivery of extremely high fluxes of trace elements from the Congo River outflow into the Southeast Atlantic Ocean. This large trace element input relieves micro-nutrient limitation (iron and cobalt) across the eastern South Atlantic and provides an unusual example of a very efficient riverine Fe source.

20 Vieira l

Figure: Comparison of dissolved iron (dFe) concentrations vs. distance from the river mouth in other riverine systems globally. The presence of dFe several hundreds of kilometres off-shelf indicates more rapid horizontal mixing of the river plume compared to other systems. TPD indicates Transpolar Drift, and NY Bight indicates New York Bight.

Reference:

Vieira, L. H., Krisch, S., Hopwood, M. J., Beck, A. J., Scholten, J., Liebetrau, V., & Achterberg, E. P. (2020). Unprecedented Fe delivery from the Congo River margin to the South Atlantic Gyre. Nature Communications, 11(1), 556. DOI: https://doi.org/10.1038/s41467-019-14255-2

 

Latest highlights

Science Highlights

Rare Earth Elements and neodymium isotopes as tracers in the Mediterranean Sea

Garcia-Solsona and co-workers analysed 9 seawater stations around the central Mediterranean Sea…

02.07.2020

Science Highlights

A new model simulates the speciation and dispersion of hydrothermal iron

Roshan and collaborators present new observations of dissolved iron and its physical speciation in the South Pacific

10.06.2020

Science Highlights

Mechanisms driving biological CO2 drawdown in the Subarctic Pacific unraveled

Nishioka and co-authors compiled comprehensive data sets of iron and macronutrients covering the whole subarctic Pacific…

04.06.2020

Science Highlights

The biogeochemical ventures of dissolved iron and manganese across the Arctic Ocean

The spatial distributions and biogeochemical cycling of dissolved Fe (dFe) and dissolved manganese (dMn) across the Arctic Ocean were established during summer and fall 2015. The Canadian GEOTRACES transect extended from the Canada Basin (CB) to the Labrador Sea (LS) via the Canadian Arctic Archipelago (CAA). The surface, subsurface and deep water distributions for both […]

15.05.2020

Rechercher