Unprecedented iron delivery from the Congo River margin to the South Atlantic Gyre

The Congo River is the world’s second largest river by discharge volume and the only major river discharging into an eastern boundary region. Despite of its size, the Congo River plume and its influence on trace element cycles and ocean primary productivity is poorly constrained. During GEOTRACES cruise GA08, Vieira and co-workers (2020, see reference below) used radium isotopes to demonstrate that a combination of high river discharge, coastal sediments or submarine groundwater discharge make the Congo the most significant riverine source of iron (Fe) to the South Atlantic. Rapid off-shelf transport close to the equator results in the delivery of extremely high fluxes of trace elements from the Congo River outflow into the Southeast Atlantic Ocean. This large trace element input relieves micro-nutrient limitation (iron and cobalt) across the eastern South Atlantic and provides an unusual example of a very efficient riverine Fe source.

20 Vieira l

Figure: Comparison of dissolved iron (dFe) concentrations vs. distance from the river mouth in other riverine systems globally. The presence of dFe several hundreds of kilometres off-shelf indicates more rapid horizontal mixing of the river plume compared to other systems. TPD indicates Transpolar Drift, and NY Bight indicates New York Bight.

Reference:

Vieira, L. H., Krisch, S., Hopwood, M. J., Beck, A. J., Scholten, J., Liebetrau, V., & Achterberg, E. P. (2020). Unprecedented Fe delivery from the Congo River margin to the South Atlantic Gyre. Nature Communications, 11(1), 556. DOI: https://doi.org/10.1038/s41467-019-14255-2

Latest highlights

North – South contrasting behavior of dissolved cobalt in the Indian Ocean

Malla and Singh have studied the complex biogeochemical processes of total dissolved cobalt in the Indian Ocean.

The Amazonian mangrove systems accumulate and release dissolved neodymium and hafnium to the oceans

Xu and colleagues investigated the concentrations of rare earth elements in the Amazonian mangrove.

Biological production of ligands influences iron chemistry in hydrothermal systems

For the first time, siderophores and siderophore-producing microbes were determined in 11 distinct hydrothermal plume environments.

Nutrient-OMICS coupling approach reveals unexpected actors for atmospheric carbon sequestration

Sharma and colleagues investigated the role of clay minerals in strengthening the marine biological pump.

Rechercher