Trans Polar Drift transport controls the dissolved copper-organic binding ligand distribution

Copper is known as bio-essential trace metals which dissolved distribution is constrained by complexation with dissolved organic-binding ligands. The distribution and strength of the organic ligands depend on the environmental setting of the studied area (open or coastal ocean, productive or not, etc.). The work of Arnone and her colleagues (2023, see reference below) reports the concentrations and conditional stability constants of dissolved copper-binding ligands (LCu) in the Arctic Ocean (GEOTRACES cruise GN04 R/V Polarstern). Copper and ligand concentrations were measured along full-depth profiles in the Barents Sea, Nansen Basin, Amundsen Basin.

One of the main results illustrates the role of the Trans Polar Drift (TPD) to generate maximum LCu concentrations in the Polar Surface Waters (see figure 2). Actually, this water mass is transported from the Siberian shelves to the central Arctic by the TPD and receives large inputs of terrestrial riverine organic matter and trace metals. Thus, the TPD acts as the main source of LCu in the Amundsen and Makarov Basins and determines its distribution in the Arctic Ocean, underlining how environmental features constrain the fate of the bio-active metals.


Reference:

Arnone, V., Santana-Casiano, J. M., González-Dávila, M., Planquette, H., Sarthou, G., Gerringa, L. J. A., & González, A. G. (2023). Natural copper-binding ligands in the Arctic Ocean. The influence of the Transpolar Drift (GEOTRACES GN04). Frontiers in Marine Science, 10. Access the paper: 10.3389/fmars.2023.1306278

Latest highlights

North – South contrasting behavior of dissolved cobalt in the Indian Ocean

Malla and Singh have studied the complex biogeochemical processes of total dissolved cobalt in the Indian Ocean.

The Amazonian mangrove systems accumulate and release dissolved neodymium and hafnium to the oceans

Xu and colleagues investigated the concentrations of rare earth elements in the Amazonian mangrove.

Biological production of ligands influences iron chemistry in hydrothermal systems

For the first time, siderophores and siderophore-producing microbes were determined in 11 distinct hydrothermal plume environments.

Nutrient-OMICS coupling approach reveals unexpected actors for atmospheric carbon sequestration

Sharma and colleagues investigated the role of clay minerals in strengthening the marine biological pump.

Rechercher