Tracing scavenging intensity with the original coupling between scandium, yttrium and lanthanum in surface waters

The first basin-wide surface scandium (Sc), yttrium (Y) and lanthanum (La) concentration data in a section across the North Atlantic subtropical gyre (2011 GEOTRACES GA03) is reported by Till and co-authors (2017, see reference below). First, comparison between dissolved Sc and La concentrations in aerosols and surface waters allow these authors to estimate their residence time in the upper layers. Then, they establish that Sc, which is particle reactive, is less concentrated at the gyre boundaries, likely reflecting that it could be drawn down by elevated particle flux in these areas. They propose to normalize the Sc distribution to that of Y or La, two elements much less particle reactive and which display constant ratios with Sc in the dust inputs over the North Atlantic. This trick allows them to get rid of variable inputs of Sc to the surface ocean and to propose that the variations in dissolved Y/Sc and La/Sc ratios may be due to preferential Sc scavenging and could therefore indicate scavenging intensity.

17 TillFigure: Distribution of surface dissolved La/Sc (a, dark circles) and Y/Sc (b) concentration ratios across the North Atlantic Gyre (cruise GA03). Panel (a) also shows the La/Sc ratios in soluble aerosols (open circles). The dissolved ratios are substantially higher than the source aerosol ratios, indicating that there is some process occurring in the seawater that elevates the ratios. The temperature distribution along the same cruise track (c) shows that the shape of the gyre as inferred by isotherm depth generally corresponds with the distribution of dissolved La/Sc and Y/Sc), suggesting the possibility that elevated scavenging and preferential drawdown of Sc at the gyre boundaries could leave a signature in the surface dissolved La/Sc and Y/Sc ratios. Click here to view the figure larger.


Till, C. P., Shelley, R. U., Landing, W. M., & Bruland, K. W. (2017). Dissolved scandium, yttrium, and lanthanum in the surface waters of the North Atlantic: Potential use as an indicator of scavenging intensity. Journal of Geophysical Research: Oceans, 122(8), 6684–6697.


Latest highlights

Science Highlights

Controls of cadmium-phosphate systematic unraveled by Neural Networks and Ocean Circulation Inverse Model

Roshan and DeVries explore the similarities and contrasts between oceanic cadmium and phosphate cycles using an Artificial Neural Network mapping technique and Ocean Circulation Inverse Model.


Science Highlights

Retreat of large marine-terminating glaciers may increase iron supply to surface waters

The findings demonstrate that glacial retreat and loss of ice-shelves may potentially result in increases in dissolved Fe supply to surface waters downstream of large marine terminating glaciers in future.


Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of two increase over previous estimates having important implications for the global silicon cycle.


Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of neodymium isotopes as a useful tracer of ocean circulation.