Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium (231Pa) and 230-thorium (230Th) analyses were realised by Ng and colleagues (2020, see reference below) along five depth transects across the northern tropical Atlantic open ocean.  Among them, eighteen seawater-sediment pairs from nearby sites were compared. A thorough examination of this coupling associated to published data of 231Pa and 230Th in the North Atlantic Ocean, allow the authors to i) confirm the dominance of the 231Pa-export signal in the deep Atlantic associated with the southward advection of North Atlantic Deep Water (NADW) but also ii) observe contrasting local increases of sedimentary 231Pa/230Th above the production ratio, with higher values at intermediate depths (0.5–1.5 km) and in the eastern and mid-Atlantic sites. These last observations reflect either an additional input of 231Pa to the intermediate depths, or enhanced 231Pa scavenging at the eastern and mid-Atlantic sites, and/or the influence of boundary scavenging near the eastern margin.

Figure (modified from Ng, et al. 2020): Tropical Atlantic seawater 231Pa/230Th data and recently-deposited seafloor sediment 231Pa/230Th data. The map on the left shows the locations of seawater (square symbols) and sediment (circle symbols) data, and the red lines mark the boundary of the East-West depth section plotted on the right. The colour map in the depth section represents interpolated seawater 231Pa/230Th data, while the sediment 231Pa/230Th data is plotted overlain the seawater data as coloured circles. Seawater 231Pa/230Th is typically higher than the sediment 231Pa/230Th of a given site, reflecting the greater solubility of the 231Pa isotope. Sediment 231Pa/230Th values lower than the production ratio (0.093) indicate a net export of 231Pa, while sediment values higher than 0.093 reflect a net input of 231Pa, relative to 230Th. Sediment data may appear to be ‘below’ or ‘floating above’ the seafloor drawn in dark grey, because they are superimposed on a representative section across the Atlantic, rather than the overlying bathymetry measured at the actual sites.

Reference:

Ng, H. C., Robinson, L. F., Rowland, G. H., Chen, S. S., & McManus, J. F. (2020). Coupled analysis of seawater and sedimentary 231Pa/230Th in the tropical Atlantic. Marine Chemistry, 227, 103894. DOI: https://doi.org/10.1016/J.MARCHEM.2020.103894

Latest highlights

Science Highlights

Icebergs as sources of trace metals to the ocean: which impact?

Earth’s Ice Sheets are known to release significant quantities of lithogenic particles into the ocean every year, but how does this material affect trace metal availability in the ocean?

18.10.2021

Science Highlights

Microbial trace metal trafficking on marine particles

This study provides evidence for the processing of nine particulate trace metals in multiple manners by diverse microbial communities.

28.09.2021

Science Highlights

Volcanic emissions in the Southern Ocean: an efficient and unexpected source of iron for this remote area

This study suggests that volcanic emission can represent a significant source of bioavailable Fe to open ocean anaemic ecosystems.

20.09.2021

Science Highlights

Surprisingly heavy silicon isotopes in the surface and deep Arctic Ocean

Brzezinski and his colleagues report on a comprehensive study of the Arctic Ocean silicic acid concentrations and silicon isotopic composition…

14.09.2021

Rechercher