Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium (231Pa) and 230-thorium (230Th) analyses were realised by Ng and colleagues (2020, see reference below) along five depth transects across the northern tropical Atlantic open ocean.  Among them, eighteen seawater-sediment pairs from nearby sites were compared. A thorough examination of this coupling associated to published data of 231Pa and 230Th in the North Atlantic Ocean, allow the authors to i) confirm the dominance of the 231Pa-export signal in the deep Atlantic associated with the southward advection of North Atlantic Deep Water (NADW) but also ii) observe contrasting local increases of sedimentary 231Pa/230Th above the production ratio, with higher values at intermediate depths (0.5–1.5 km) and in the eastern and mid-Atlantic sites. These last observations reflect either an additional input of 231Pa to the intermediate depths, or enhanced 231Pa scavenging at the eastern and mid-Atlantic sites, and/or the influence of boundary scavenging near the eastern margin.

Figure (modified from Ng, et al. 2020): Tropical Atlantic seawater 231Pa/230Th data and recently-deposited seafloor sediment 231Pa/230Th data. The map on the left shows the locations of seawater (square symbols) and sediment (circle symbols) data, and the red lines mark the boundary of the East-West depth section plotted on the right. The colour map in the depth section represents interpolated seawater 231Pa/230Th data, while the sediment 231Pa/230Th data is plotted overlain the seawater data as coloured circles. Seawater 231Pa/230Th is typically higher than the sediment 231Pa/230Th of a given site, reflecting the greater solubility of the 231Pa isotope. Sediment 231Pa/230Th values lower than the production ratio (0.093) indicate a net export of 231Pa, while sediment values higher than 0.093 reflect a net input of 231Pa, relative to 230Th. Sediment data may appear to be ‘below’ or ‘floating above’ the seafloor drawn in dark grey, because they are superimposed on a representative section across the Atlantic, rather than the overlying bathymetry measured at the actual sites.

Reference:

Ng, H. C., Robinson, L. F., Rowland, G. H., Chen, S. S., & McManus, J. F. (2020). Coupled analysis of seawater and sedimentary 231Pa/230Th in the tropical Atlantic. Marine Chemistry, 227, 103894. DOI: https://doi.org/10.1016/J.MARCHEM.2020.103894

Latest highlights

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean.

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Science Highlights

Time series thorium-230 data reveal scavenging intensification over the last 15 years in the Arctic Ocean

Authors demonstrate that the later hypothesis is likely explaining thorium-230-depletion in intermediate layers of the Amundsen basin.

07.12.2020

Rechercher