Using the three thorium isotope toolbox to probe the particle dynamic within an East Pacific Rise hydrothermal plume

The insoluble radiogenic isotopes of thorium (Th) are produced at a known rate in the water column via the decay of soluble uranium (234Th, 230Th) and radium (228Th) isotopes. These three isotopes are radioactive and their half-lives vary from days (234Th) to years (228Th) to tens of thousands of years (230Th). Combining their known production and decay rates with their insolubility makes them excellent tools to study the particle dynamics on a wide range of timescales.

This toolbox was successfully used by Pavia and co-workers (2019, see reference below) to study particle-dissolved exchange within the hydrothermal plume detected during the GEOTRACES GP16 cruise in the southeast Pacific Ocean. The goal of these authors was to unravel how hydrothermal activity affects the different steps characterizing the scavenging processes, i.e. adsorption and desorption onto particles, particle aggregation, sinking, and eventual sedimentation.

Their main conclusions are that: 1) particle aggregation was occurring much more rapidly in the plume, 2) hydrothermal scavenging is partially irreversible, 3) off-axis hydrothermal Th scavenging rate of 0.15yr−1, value deduced from a modelling and 4) 230Th is surprisingly more depleted than the two other isotopes. This likely reflects progressive scavenging in this region of intense hydrothermal activity and underlines the complexity of interpreting the GP16 hydrothermal plume as being solely a local phenomenon.

19 Pavia

Figure: Depletion observed in three thorium isotopes in the hydrothermal plume observed downstream of the East Pacific Rise on the GEOTRACES GP16 section in the South Pacific Ocean. Plots A), B), and C) show the depletion in each thorium isotope at stations 18 (closest to the ridge axis) to station 21 (furthest from the ridge axis). The depletion increases with increasing half-life of thorium isotope, going from 234Th (half-life = 24.1 days) showing the least depletion, followed by 228Th (half-life = 1.91 years), with 230Th (half-life = 75,587 years) the most depleted. D) Shows the map of the study area, with solid white arrows proportional to current speeds at the plume depth of 2500m, and the white dashed arrow displaying the proposed flowpath of the hydrothermal plume observed in the study, along which thorium is progressively removed from the deep ocean. Click here to view the figure larger.


Pavia, F. J., Anderson, R. F., Black, E. E., Kipp, L. E., Vivancos, S. M., Fleisher, M. Q., Charette, M. A., Sanial, V., Moore, W. S., Hult, M., Lu, Y., Cheng, H., Zhang, P., Edwards, R. L. (2019). Timescales of hydrothermal scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th. Earth and Planetary Science Letters, 506, 146–156. DOI:

Latest highlights

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean


Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.


Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…


Science Highlights

Time series thorium-230 data reveal scavenging intensification over the last 15 years in the Arctic Ocean

Authors demonstrate that the later hypothesis is likely explaining thorium-230-depletion in intermediate layers of the Amundsen basin.