Using the three thorium isotope toolbox to probe the particle dynamic within an East Pacific Rise hydrothermal plume

The insoluble radiogenic isotopes of thorium (Th) are produced at a known rate in the water column via the decay of soluble uranium (234Th, 230Th) and radium (228Th) isotopes. These three isotopes are radioactive and their half-lives vary from days (234Th) to years (228Th) to tens of thousands of years (230Th). Combining their known production and decay rates with their insolubility makes them excellent tools to study the particle dynamics on a wide range of timescales.

This toolbox was successfully used by Pavia and co-workers (2019, see reference below) to study particle-dissolved exchange within the hydrothermal plume detected during the GEOTRACES GP16 cruise in the southeast Pacific Ocean. The goal of these authors was to unravel how hydrothermal activity affects the different steps characterizing the scavenging processes, i.e. adsorption and desorption onto particles, particle aggregation, sinking, and eventual sedimentation.

Their main conclusions are that: 1) particle aggregation was occurring much more rapidly in the plume, 2) hydrothermal scavenging is partially irreversible, 3) off-axis hydrothermal Th scavenging rate of 0.15yr−1, value deduced from a modelling and 4) 230Th is surprisingly more depleted than the two other isotopes. This likely reflects progressive scavenging in this region of intense hydrothermal activity and underlines the complexity of interpreting the GP16 hydrothermal plume as being solely a local phenomenon.

19 Pavia

Figure: Depletion observed in three thorium isotopes in the hydrothermal plume observed downstream of the East Pacific Rise on the GEOTRACES GP16 section in the South Pacific Ocean. Plots A), B), and C) show the depletion in each thorium isotope at stations 18 (closest to the ridge axis) to station 21 (furthest from the ridge axis). The depletion increases with increasing half-life of thorium isotope, going from 234Th (half-life = 24.1 days) showing the least depletion, followed by 228Th (half-life = 1.91 years), with 230Th (half-life = 75,587 years) the most depleted. D) Shows the map of the study area, with solid white arrows proportional to current speeds at the plume depth of 2500m, and the white dashed arrow displaying the proposed flowpath of the hydrothermal plume observed in the study, along which thorium is progressively removed from the deep ocean. Click here to view the figure larger.

Reference:

Pavia, F. J., Anderson, R. F., Black, E. E., Kipp, L. E., Vivancos, S. M., Fleisher, M. Q., Charette, M. A., Sanial, V., Moore, W. S., Hult, M., Lu, Y., Cheng, H., Zhang, P., Edwards, R. L. (2019). Timescales of hydrothermal scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th. Earth and Planetary Science Letters, 506, 146–156. DOI: http://doi.org/10.1016/J.EPSL.2018.10.038

Latest highlights

Warning on Polonium-210/Lead-210 data quality!

Alerted by the fact that the published Polonium-210:Lead-210 profiles showed ubiquitous disequilibrium in the deep ocean, Mark Baskaran and colleague conducted a critical review…

Substantial trace metal input from the 2022 Hunga Tonga-Hunga Ha’apai eruption into the South Pacific Ocean

Zhang and co-workers investigate the impact of the 2022 eruption on the biogeochemistry of the South Pacific Gyre.

Lead isotopes, reversible scavenging and ventilation processes in the South Atlantic Ocean

Olivelli and co-authors present seawater lead concentrations and lead isotopes for 10 depth profiles collected in the South Atlantic Ocean.

Iron limitation also affects the twilight zone

Li and co-workers established the distribution and uptake of siderophores along the Pacific meridional section (GP15 GEOTRACES cruise)…

Rechercher