The sedimentary flux of dissolved rare earth elements to the ocean

This work highlights the importance of the sedimentary source of dissolved Rare Earth Elements (REE) to the oceanic waters. Indeed, strong subsurface REE concentration maxima are evidenced in pore fluids in core tops collected along the Californian and Oregon margins (above, within and below the oxygen minimum zone of the North-East Pacific). Diffusive flux of neodymium (Nd) out of the sediments matches preceding estimates of the “missing term” of Nd in modeled global Nd budgets. Also interesting, the decoupling between REE and iron fates in these pore fluids…

15 Abbott l
Figure: Site locations and the associated pore fluid profiles. Neodymium (Nd) and iron (Fe) profiles plotted against sediment depth in pore fluids from (clockwise from top left) the Oregon shelf, the Oregon slope, and the California shelf. Filled symbols represent sites unique to this study and open symbols are sites from prior expeditions. Rivers are indicated in blue and labeled. Click here to view the figure larger.


Abbott, A. N., Haley, B. A., McManus, J., & Reimers, C. E. (2015). The sedimentary flux of dissolved rare earth elements to the ocean. Geochimica et Cosmochimica Acta, 154, 186–200. doi:10.1016/j.gca.2015.01.010. Please click here to access the paper.

Latest highlights

Science Highlights

Particulate Trace Element Export in the North Atlantic Ocean

Authors estimated particulate trace element export fluxes and residence times in the upper North Atlantic Ocean


Science Highlights

Surface water trace element and isotope data challenge dust flux models

They reveal that atmospheric deposition and not the physical transport, is the most important process supplying Fe to phytoplankton in the South Pacific Gyre


Science Highlights

Dissolved iron and manganese fates reveal processes along the hydrothermal TAG plume

Authors performed high-spatial resolution analyses of dissolved iron and manganese samples collected at the Mid Atlantic Ridge


Science Highlights

The power of combining geochemical tracer data with direct current measurements

Learn about new discoveries done combining seawater Rare Earth Elements concentrations and direct physical oceanographic observations