The sedimentary flux of dissolved rare earth elements to the ocean

This work highlights the importance of the sedimentary source of dissolved Rare Earth Elements (REE) to the oceanic waters. Indeed, strong subsurface REE concentration maxima are evidenced in pore fluids in core tops collected along the Californian and Oregon margins (above, within and below the oxygen minimum zone of the North-East Pacific). Diffusive flux of neodymium (Nd) out of the sediments matches preceding estimates of the “missing term” of Nd in modeled global Nd budgets. Also interesting, the decoupling between REE and iron fates in these pore fluids…

15 Abbott l
Figure: Site locations and the associated pore fluid profiles. Neodymium (Nd) and iron (Fe) profiles plotted against sediment depth in pore fluids from (clockwise from top left) the Oregon shelf, the Oregon slope, and the California shelf. Filled symbols represent sites unique to this study and open symbols are sites from prior expeditions. Rivers are indicated in blue and labeled. Click here to view the figure larger.


Abbott, A. N., Haley, B. A., McManus, J., & Reimers, C. E. (2015). The sedimentary flux of dissolved rare earth elements to the ocean. Geochimica et Cosmochimica Acta, 154, 186–200. doi:10.1016/j.gca.2015.01.010. Please click here to access the paper.

Latest highlights

MOTES: a new facility designed for trace element sampling in seawater

Zhang and a group of engineers and researchers from Shanghai and Qingdao are presenting a modular trace element sampling facility.

A thorough estimate of the hydrothermal plumes on neodymium concentration and isotope oceanic cycles

Basak and co-workers investigated the influence of particulate matter on neodymium distributions in the Southern East Pacific Rise Hydrothermal Plume.

What are the drivers of the distributions of cadmium, nickel, zinc, copper and cobalt, manganese and aluminium in the Atlantic Ocean? Two papers are tackling this issue

Chen and co-authors reveal that the distributions of dissolved tracers at depth in the South Atlantic are predominantly controlled by the mixing of North Atlantic Deep Water and waters of Antarctic origin…

Disentangling the sources and transport of iron in the Southern Ocean using a water mass mixing model analysis

Traill and co-workers used an extended optimum multiparameter analysis water‐mass mixing model to determine the interplay between physical and biological processes, and sources/sinks driving dissolved iron distributions…