The potential of anthropogenic 236-Uranium as a new and transient oceanographic tracer demonstrated in the North Atlantic

236-Uranium (236U) is present on Earth due to natural and anthropogenic production. However, the estimated inventory of anthropogenic 236U (106 kg) largely exceeds the natural one (30 kg). Releasing even a tiny fraction of this artificial isotope would drastically change the environmental 236U/238U ratio and therefore make this ratio a useful isotopic marker to trace such anthropogenic releases and to study seawater transport and mixing processes in the ocean.

Casacuberta and her colleagues took this premise to propose the first transect of 236U in the North Atlantic Ocean during the first two legs of the GEOTRACES GA02 cruise. Global fallout and the releases of the European reprocessing nuclear plants La Hague and Sellafield are the main sources of 236U to the ocean. Results of this transect showed that there is a North to South and surface to deep decreasing gradient of 236U/238U atomic ratio when moving from 64ºN to 2ºN mirroring the distribution of waters masses in this region. In particular, highest 236U contents are shown in the Labrador Sea Water and Denmark Strait Overflow Water, tracing the penetration of waters to the North Atlantic Ocean that carry the signal of 236U from the two European reprocessing plants. This pioneer work is proving that 236U can be an efficient water mass transient tracer.

14 Casacuberta
Figure: Distribution of 236U in the North Atlantic Ocean. Click here to view the figure larger.



Casacuberta, N., Christl, M., Lachner, J., Rutgers van der Loeff, M., Masqué, P., & Synal, H. -A. (2014). A first transect of 236U in the North Atlantic Ocean. Geochimica et Cosmochimica Acta, 133, 34–46. doi:10.1016/j.gca.2014.02.012. Click here to access the paper.

Latest highlights

Science Highlights

Quantifying the weathered fluxes to the ocean is far from over: the overlooked role of rock coast erosion

This study reveals that cliff derived sediment supply is only three times less than the solid discharge of rivers for Europe.


Science Highlights

Contrasting distributions of dissolved manganese, nickel, cadmium and zinc in the Mediterranean Sea

Extensive trace metal clean sampling during the Dutch GEOTRACES cruise in the Mediterranean Sea allowed Middag and his colleagues to establish the basin scale distribution of these trace metals.


Science Highlights

Specific features characterize the dissolved iron distribution in the North Western Indian Ocean

Venkatesh Chinni and Sunil Kumar Singh propose dissolved iron profiles along two meridional transects realized during spring and fall seasons between the Arabian Sea and the sub-tropical western Indian Ocean…


Science Highlights

Anthropogenic aerosol has become a dominant source of zinc in the deep water of the Northern South China Sea

Liao and colleagues determined zinc concentrations and isotope compositions in sinking particles collected in the Northern South China Sea…