The coupled zinc-silicon cycle paradox illuminated

The strong similarities between zinc (Zn) and silicon (Si) vertical profiles have led many studies to suggest the uptake of Zn in diatom frustules, followed by simultaneous remineralisation at depth. However, recent lab experiments have demonstrated that Zn, although essential for diatoms, is located in the organic part of the cell. These cells are characterized by particularly high Zn/P ratios in the Southern Ocean (up to 8 times greater than at low latitudes). Such contrasting observations have raised the question as to what processes could lead to such consistent Si-Zn relationship, given that Zn and Si uptake are obviously not controlled by the same biological process. Vance and co-workers (2017, see reference below) infer that the oceanic zinc distribution is the result of the interaction between the specific uptake stoichiometry in Southern Ocean surface waters and the physical circulation through the Southern Ocean hub.

Their approach couples in situ data collected in the different oceanic basins, experimental results from the literature and physical-biogeochemical coupled modelling on a global scale. This work emphasizes how the consideration of 1-D cycling only can bias the understanding of (macro and micro) nutrient behaviours, and therefore

17 Vance l

Figure: Depth profiles of dissolved zinc, silica and phosphate in three different ocean basins (bottom), with the locations of each profile shown on the map (top). Both zinc and silicate show deep maxima whereas phosphate has a much shallower maximum, despite the fact that the oceanic biogeochemical cycle of Zn is dominated by uptake into the organic parts of diatom cells with phosphate. Vance et al. explain these features in terms of biological and physical processes in the Southern Ocean. Modified from Nature Geoscience. Please click here to view the figure larger.

Reference:

Vance, D., Little, S. H., de Souza, G. F., Khatiwala, S., Lohan, M. C., & Middag, R. (2017). Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nature Geoscience. DOI: 10.1038/ngeo2890

Latest highlights

Science Highlights

Quantifying the weathered fluxes to the ocean is far from over: the overlooked role of rock coast erosion

This study reveals that cliff derived sediment supply is only three times less than the solid discharge of rivers for Europe.

21.01.2022

Science Highlights

Contrasting distributions of dissolved manganese, nickel, cadmium and zinc in the Mediterranean Sea

Extensive trace metal clean sampling during the Dutch GEOTRACES cruise in the Mediterranean Sea allowed Middag and his colleagues to establish the basin scale distribution of these trace metals.

19.01.2022

Science Highlights

Specific features characterize the dissolved iron distribution in the North Western Indian Ocean

Venkatesh Chinni and Sunil Kumar Singh propose dissolved iron profiles along two meridional transects realized during spring and fall seasons between the Arabian Sea and the sub-tropical western Indian Ocean…

07.01.2022

Science Highlights

Anthropogenic aerosol has become a dominant source of zinc in the deep water of the Northern South China Sea

Liao and colleagues determined zinc concentrations and isotope compositions in sinking particles collected in the Northern South China Sea…

24.11.2021

Rechercher