The coupled zinc-silicon cycle paradox illuminated

The strong similarities between zinc (Zn) and silicon (Si) vertical profiles have led many studies to suggest the uptake of Zn in diatom frustules, followed by simultaneous remineralisation at depth. However, recent lab experiments have demonstrated that Zn, although essential for diatoms, is located in the organic part of the cell. These cells are characterized by particularly high Zn/P ratios in the Southern Ocean (up to 8 times greater than at low latitudes). Such contrasting observations have raised the question as to what processes could lead to such consistent Si-Zn relationship, given that Zn and Si uptake are obviously not controlled by the same biological process. Vance and co-workers (2017, see reference below) infer that the oceanic zinc distribution is the result of the interaction between the specific uptake stoichiometry in Southern Ocean surface waters and the physical circulation through the Southern Ocean hub.

Their approach couples in situ data collected in the different oceanic basins, experimental results from the literature and physical-biogeochemical coupled modelling on a global scale. This work emphasizes how the consideration of 1-D cycling only can bias the understanding of (macro and micro) nutrient behaviours, and therefore

17 Vance l

Figure: Depth profiles of dissolved zinc, silica and phosphate in three different ocean basins (bottom), with the locations of each profile shown on the map (top). Both zinc and silicate show deep maxima whereas phosphate has a much shallower maximum, despite the fact that the oceanic biogeochemical cycle of Zn is dominated by uptake into the organic parts of diatom cells with phosphate. Vance et al. explain these features in terms of biological and physical processes in the Southern Ocean. Modified from Nature Geoscience. Please click here to view the figure larger.

Reference:

Vance, D., Little, S. H., de Souza, G. F., Khatiwala, S., Lohan, M. C., & Middag, R. (2017). Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nature Geoscience. DOI: 10.1038/ngeo2890

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Rechercher