The biogeochemical ventures of dissolved iron and manganese across the Arctic Ocean

The spatial distributions and biogeochemical cycling of dissolved Fe (dFe) and dissolved manganese (dMn) across the Arctic Ocean were established during summer and fall 2015. The Canadian GEOTRACES transect extended from the Canada Basin (CB) to the Labrador Sea (LS) via the Canadian Arctic Archipelago (CAA).

The surface, subsurface and deep water distributions for both metals are controlled by i) a large variety of processes and ii) a complex balance between sources and sink (river inputs in surface, advective transports and particle remineralization at depth). For example, the highest concentrations are measured in surface waters of the CAA and the CB because these regions are strongly influenced by river inputs. Contrastingly, in the highly productive Baffin Bay and Labrador Sea, the surface waters are markedly depleted in dFe and dMn while organic matter remineralization likely acts as a notable source of these elements to deep waters.

The figure below summarizes the complexity of the processes governing the fate of these elements in the Canadian Arctic Ocean.

Figure: a) Sampled stations for Fe and Mn during the Canadian Arctic GEOTRACES cruises, bathymetry and schematic of water circulation. b) Conceptual scheme displaying the concentrations and key processes (e.g. freshwater and sedimentary inputs, remineralization and scavenging removal) controlling the distributions of dissolved Fe and Mn in the Canadian Arctic Ocean.

Reference:

Colombo, M., Jackson, S. L., Cullen, J. T., & Orians, K. J. (2020). Dissolved iron and manganese in the Canadian Arctic Ocean: On the biogeochemical processes controlling their distributions. Geochimica et Cosmochimica Acta, 277, 150–174. DOI : https://doi.org/10.1016/j.gca.2020.03.012

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Rechercher