Substantial intra-basin variation of the dissolved metal/phosphorus ratio in the different water masses of the Indian Ocean

The first simultaneous, full-depth, and basin-scale section-distribution of dissolved (D) aluminum (Al), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu),  zinc (Zn), cadmium (Cd), and lead (Pb) is reported in the Indian Ocean. In addition to widespread co-limitation for phytoplankton production by dissolved iron (DFe) and occurrence of redox-related processes, the authors observe an important variability of the dissolved metal/phosphorus ratio among the water masses within the Indian ocean (up to a factor of 300 between Arabian Surface waters and Lower Circumpolar Deep Water). The Cu/P, Zn/P, and Cd/P ratios are within the same order of magnitude for both phytoplankton and deep water, whereas the Mn/P, Fe/P, and Co/P ratios of phytoplankton can increase 100-fold or more compared to those in deep water. Such results are questioning the validity of using an “extended Redfield ratio” to trace metals. The consistent mechanism yielding these variations remains to be understood...

Meridional section distribution (~70°E) of the DMn/DAl ratio

Figure: Meridional section distribution (~70°E) of the DMn/DAl ratio.


Thi Dieu Vu, H., Sohrin, Y. (2013) Diverse stoichiometry of dissolved trace metals in the Indian Ocean, Scientific Reports 3, DOI: 10.1038/srep01745

Latest highlights

Science Highlights

Dissolved iron and manganese fates reveal processes along the hydrothermal TAG plume

González-Santana and co-workers performed high-spatial resolution analyses of dissolved iron and manganese samples collected at the Mid Atlantic Ridge


Science Highlights

The power of combining geochemical tracer data with direct current measurements

Learn about new discoveries done combining seawater Rare Earth Elements concentrations and direct physical oceanographic observations


Science Highlights

Loss of old Arctic sea ice increases methylmercury concentrations

Researchers from the SCRIPPS, the Stockholm Natural Museum and the Mediterranean Institute of Oceanography show the importance of sea ice composition on methylmercury budgets


Science Highlights

Estimating Atmospheric Trace Element Deposition Over the Global Ocean

A recently developed method based on the natural radionuclide beryllium-7 has provided a means to estimate the bulk atmospheric trace element deposition velocity