Large amounts of soluble manganese(III) identified at the land-ocean interface

Soluble manganese(III) [Mn(III)] is a phase traditionally considered non important in aqueous redox reactions. However, applying a spectrophotometric method sensitive to Mn oxidation state, Madison and co-authors found that up 90% of the Mn in porewater collected from sediment cores in the St. Lawrence Estuary is soluble Mn(III). The authors conclude that the conceptual model of the sedimentary redox cycle should be reviewed to include dissolved Mn(III). This result also has implication for the oxidation of iron(II) [Fe(II)] to Fe(III) process and, because Mn(III) can act as either an electron acceptor or an electron donor, the authors suggest that reduction-oxidation capacity of the soluble Mn pool in sediments has been underestimated.

13 Madison l
Figure: This figure shows the study sites (on the top), a picture of a core (on the left) and Mn and Fe profiles. Picture © George W. Luther III. Please click here to view the figure larger

Mn(III) can also form when MnO2 oxidizes Fe(II) to Fe(III). Figure A shows the solid phase data; Figure B the soluble Fe data; Figure C the soluble Mn data; in Figure D, a diagenetic model was used to profile the data. The agreement is good as various reactions for the production and loss of Mn(III) were added to the model. Models can finally predict the position and shape of all soluble Mn species.


Madison, Andrew S., Bradley M. Tebo, Alfonso Mucci, Bjørn Sundby, and George W. Luther III (2013) Abundant Porewater Mn(III) is a Major Component of the Sedimentary Redox System, Science 23 August 2013: 341 (6148), 875-878. DOI:10.1126/science.1241396

Latest highlights

Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of Nd isotopes as a useful tracer of ocean circulation.


Science Highlights

Neodymium concentrations and isotopes help disentangling Siberian river influences on the Arctic Ocean

Paffrath and co-autors followed the relative contributions of the main Siberian rivers to the waters of the Transpolar Drift using neodymium parameters.

Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of 2 increase over previous estimates having important implications for the global silicon cycle.


Science Highlights

Manganese: a surprising co-limiting factor of phytoplankton growth in the Southern Ocean

One of the main consequences of this work is that manganese should be included in ocean-climate models, more particularly to improve the accuracy of their predictions in this area.