Land inputs in the Arctic transported up to the North Pole

M. Charette and his colleagues (2020, see reference below) gathered data on trace elements, radionuclides, dissolved organic matter and many ancillary parameters collected as part of the two Arctic GEOTRACES cruises conducted in 2015 (U.S. GEOTRACES GN01 and German GEOTRACES GN04). They revealed that freshwater runoff from rivers and continental shelf sediments are bringing significant quantities of carbon and trace elements into parts of the Arctic Ocean via the Transpolar Drift—a major surface current that moves water from Siberia across the North Pole to the North Atlantic Ocean. Surprisingly, trace elements are barely scavenged at the land-ocean contact. This is due to the fact that in the Arctic, these elements are strongly bound with abundant organic matter from rivers, which allows the mixture to be transported into the central Arctic, over 1,000 kilometers from their source and acting as surface water fertilizer.

Higher concentrations of trace elements and nutrients previously locked up in frozen soils (permafrost) are expected to increase as more river runoff reaches the Arctic, a hot spot of the climate warming.  However, while an increase in nutrients may boost Arctic marine productivity, the authors caution that the continued loss of sea ice will further exacerbate climate warming, which will impact ecosystems more broadly.

Figure: Map of the 2015 US GEOTRACES GN1 expedition in the Arctic Ocean. (Illustration by Natalie Renier, © Woods Hole Oceanographic Institution).

Reference:

Charette, M. A., et al. (2020). The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean. Journal of Geophysical Research: Oceans, e2019JC015920. DOI: https://doi.org/10.1029/2019jc015920

Latest highlights

Science Highlights

The biogeochemical ventures of dissolved iron and manganese across the Arctic Ocean

The spatial distributions and biogeochemical cycling of dissolved Fe (dFe) and dissolved manganese (dMn) across the Arctic Ocean were established during summer and fall 2015. The Canadian GEOTRACES transect extended from the Canada Basin (CB) to the Labrador Sea (LS) via the Canadian Arctic Archipelago (CAA). The surface, subsurface and deep water distributions for both […]

15.05.2020

Science Highlights

Arctic mercury export flux with marine particles higher than anticipated

In the ocean, the residence time of mercury (Hg), is largely driven by two removal mechanisms: evasion to the atmosphere and downward export flux with settling particles. The later was particularly poorly constrained in the Arctic Ocean, as was the Hg burial rate into the sediment. Using samples collected during the German GEOTRACES TransArcII (GN04) […]

06.05.2020

Science Highlights

Loihi Seamount, hydrothermal Helium-3 and dissolved iron sources and their dispersion within the Pacific Ocean

As part of the GEOTRACES cruise GP15, Jenkins and co-workers (2020, see reference below) observed large water column anomalies in helium isotopes and trace metal concentrations above the Loihi Seamount (~19°N, 154°W) that extends along the GP15 track for hundreds of kilometers. Expanding their data with historical ones, they observe that the Loihi Helium-3 (3He) […]

04.05.2020

Science Highlights

Silicon isotopes reveal the different Arctic endmembers contributing to the deep water formed in the North Atlantic Ocean

Combining a multiparametric analysis, biogenic and dissolved silicon (Si) isotope data (30Si-bSiO2 and δ30Si-DSi, respectively) in the Arctic Ocean, Liguori and co-workers (2020, see reference below) could unravel the influence of water masses on the δ30Si-DSi distribution within the Arctic Ocean. Any deviation of the δ30Si-DSi signature from pure mixing was attributed to the contribution […]

20.04.2020

Rechercher