Seasonal iron supply in the Southern Ocean is dominated by winter mixing

An international team of researchers analysed the available dissolved iron data taken from all previous studies of the Southern Ocean, together with satellite images taken of the area, to quantify the amount of iron supplied to the surface waters of the Southern Ocean. They found that in contrast to the processes that supply so-called macronutrients in the tropics, seasonal iron supply is dominated by winter mixing with little iron input afterwards. This is because the vertical profile of iron is distinct from other nutrients, with subsurface reserves located much deeper in the water column and therefore only accessible by the deeper mixing that occurs in winter. This means that after this input pulse, intense iron recycling by the ‘ferrous wheel’ is necessary to sustain biological activity. This unique aspect of iron cycling is yet to be explained but places important constraints on how climate models represent the iron distribution and how changes in ocean physics impact iron limitation.

14 Tagliabue2 l

Figure. This diagram represents the seasonal variability in Southern Ocean iron (Fe) cycling. Click here to view the figure larger.

References:

Tagliabue, A., Sallée, J.-B., Bowie, A. R., Lévy, M., Swart, S., & Boyd, P. W. (2014). Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nature Geoscience, 7(4), 314–320. doi:10.1038/ngeo2101 Click here to view the paper.

Latest highlights

Science Highlights

Different fates of four poorly soluble trace elements in the Pacific Ocean

Zheng and co-authors present the full-depth distributions of aluminum, lead, manganese and copper in the western South Pacific.

24.11.2022

Science Highlights

Internal tides, energetic dynamical processes that generate particle nepheloids at different depths

In this study, Barbot and co-authors identified the sites where internal tides are responsible for sediment resuspension…

09.11.2022

Science Highlights

Greenland’s floating ice tongues, sources of dissolved lead to the Arctic

Using helium and neon as tracers for subglacial meltwater, Krisch and colleagues found that subglacial discharge is a source of dissolved lead.

Science Highlights

Debate on the dissolved nickel bioavailibility in surface waters

John and co-authors tackle one of the known paradoxes regarding trace metal cycles in the ocean…

08.11.2022

Rechercher