Seasonal iron supply in the Southern Ocean is dominated by winter mixing

An international team of researchers analysed the available dissolved iron data taken from all previous studies of the Southern Ocean, together with satellite images taken of the area, to quantify the amount of iron supplied to the surface waters of the Southern Ocean. They found that in contrast to the processes that supply so-called macronutrients in the tropics, seasonal iron supply is dominated by winter mixing with little iron input afterwards. This is because the vertical profile of iron is distinct from other nutrients, with subsurface reserves located much deeper in the water column and therefore only accessible by the deeper mixing that occurs in winter. This means that after this input pulse, intense iron recycling by the ‘ferrous wheel’ is necessary to sustain biological activity. This unique aspect of iron cycling is yet to be explained but places important constraints on how climate models represent the iron distribution and how changes in ocean physics impact iron limitation.

14 Tagliabue2 l

Figure. This diagram represents the seasonal variability in Southern Ocean iron (Fe) cycling. Click here to view the figure larger.

References:

Tagliabue, A., Sallée, J.-B., Bowie, A. R., Lévy, M., Swart, S., & Boyd, P. W. (2014). Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nature Geoscience, 7(4), 314–320. doi:10.1038/ngeo2101 Click here to view the paper.

Latest highlights

Science Highlights

Deep sea lithogenic weathering a source of iron colloids for the ocean

Homoky and co-workers determined the isotope composition of dissolved iron profiles in shallow surface sediments of the South Atlantic Uruguayan margin…

28.03.2021

Science Highlights

Adding external sources allow a better simulation of the oceanic rare earth elements cycles

Oka and colleagues demonstrate that the global distribution of REE can be reproduced by considering the internal cycle associated with reversible scavenging and external REEs inputs around continental regions.

26.03.2021

Science Highlights

First direct measurements of luxury iron uptake in natural phytoplankton communities: surprising results!

This study demonstrates the importance of biology and ecology to understanding iron biogeochemistry.

19.03.2021

Science Highlights

Air-sea gas disequilibrium drove deoxygenation of the deep ice-age ocean

This study provides one of the first mechanistic explanations for Last Glacial Maximum deep ocean deoxygenation.

18.03.2021

Rechercher