Scandium: a new oceanic tracer with surprising properties

The first modern data set of dissolved scandium (Sc) in the open ocean is presented. Thanks to three GEOTRACES cruises, its distribution is compared between the different oceanic basins. This work also compares the reactivity of Sc with its trivalent periodic table group mates: yttrium (Y) and lanthanum (La) on the one hand, and aluminium (Al) and gallium (Ga) on the other hand.

These distributions and comparisons reveal that scandium is a hybrid-type metal with a residence time on the order of 1000 years. In addition, Sc displays similar particle reactivity to iron, which makes the authors suggest that Sc could help to constrain the non-biogenic part of the iron cycle.

16 Parkeretal l
Figure: Comparing the concentrations of elements from deep water in different ocean basins is a classic way to categorize their reactivity and understand something about how they cycle through the ocean. Scandium, yttrium and lanthanum all occupy the same column in the periodic table, meaning that they are likely to have similar reactivity. However, this figure shows that while yttrium and lanthanum have higher concentrations in the North Pacific deep water than in the North Atlantic, scandium has similar deep-water concentrations in both ocean basins. From this we conclude that scandium is more reactive than yttrium and lanthanum in the ocean, and that scandium is in fact similar to iron, an important element that perhaps can be better understood through its similarity to scandium. Please click on the figure to view it larger.


Parker, C. E., Brown, M. T., & Bruland, K. W. (2016). Scandium in the open ocean: A comparison with other group 3 trivalent metals. Geophysical Research Letters, 43, 2758–2764. doi:10.1002/2016GL067827

Latest highlights

Science Highlights

Spatial and temporal variability of bioactive trace metals, speciation and organic metal-binding ligands in the eastern Gulf of Mexico

Mellett and Buck present the concentrations of bioactive trace metals (Fe, Cu, Mn, Zn, Co, Ni, Cd, and Pb), Fe-and Cu-binding organic ligands, and electroactive Fe-binding humic substances in the eastern Gulf of Mexico.


Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.


Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean.


Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.