Has the role of atmospheric dust as a control on productivity in oligotrophic regions been overestimated?

Dust particles settling into the surface of open ocean environments are for years assumed to provide nutrients to these distant nutrient-limited areas.

Torfstein and Kienast (2018, see reference below) present a unique high-resolution coupling between dust concentrations (hourly resolution) and chlorophyll-a concentrations (daily time scale resolution) across a 4-year period in the deep, nutrient-poor water column of the north Red Sea, which seriously questions this hypothesis.

This long time series study reveals that there is no correlation between dust and surface chlorophyll-a concentrations, regardless of the time of year, or the possible lags between the dust settling and the oceanic response.

The authors conclude that the role of atmospheric dust as a control on productivity could have been previously overestimated.

18 Torfstein

Figure: The study took place in (a) the Gulf of Aqaba, northern Red Sea, and combined monthly and daily resolved records of  chlorophyl-a concentrations sampled at (b) the Interuniversity Institute for Marine Sciences (IUI) and station A (29°280N, 34°560E, water depth 700 m), respectively. The distance between the two sites is approximately 4 km. Dust time series were recorded at the IUI and its vicinity at weekly, daily and hourly resolution.  (c) A comparison between water temperatures and vertical chlorophyll-a (chl-a) concentrations at station A (monthly resolution), daily and monthly chl-a surface concentrations (μg/L), and dust concentrations (μg/m3) at a weekly, 6 hour and 1 hour time resolution, between January 2012 and August 2016, imply that no statistically significant correlation exists between dust patterns and chl-a concentrations. Click here to view the figure larger.

Reference:

Torfstein, A., & Kienast, S. S. (2018). No correlation between atmospheric dust and surface ocean chlorophyll-a in the oligotrophic Gulf of Aqaba, northern Red Sea. Journal of Geophysical Research: Biogeosciences, 123. https://doi.org/10.1002/2017JG004063

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Rechercher