Rare Earth Elements and neodymium isotopes as tracers in the Mediterranean Sea

Garcia-Solsona and co-workers (2020, see reference below) analysed 9 seawater stations around the central Mediterranean Sea (MS) to clarify the relative importance of external sources, vertical (biogeochemical) processes and lateral water mass transport in controlling Rare Earth Elements (REE) and neodymium isotopic composition (εNd) distributions.

Their results clearly identify the influence of continental input from the western Italian coast to the Tyrrhenian surface waters, marked by a negative correlation of surface light REE enrichment with offshore distance.

Contrastingly, a reasonable conservative behaviour of heavy REE and εNd is observed in the Central MS. This contrast induces a decoupling of [Nd] and εNd in all water masses of the central MS below the thermocline.  

The conservativity of heavy REE and εNd as water mass mixing tracers was successfully established using an Optimum Multi-Parameter Analysis (OMPA) and confirming that the distributions of heavy REE and εNd signals are determined by mixing of the water masses present in the region: Modified Atlantic Water (MAW), Levantine Intermediate Water (LIW), Eastern Mediterranean Deep Water (EMDW) and Western Mediterranean Deep Water (WMDW). From their results, authors further suggest that εNd helps traditional oceanographic tracers in better defining the intrusion of EMDW through the Strait of Sicily to the western Mediterranean basin.

HiRes
Figures: The bottom figure is a map of the Central Mediterranean Sea with sampled stations in coloured dots. The dashed green line indicates the NW-SE section used to display the eNd values represented in the figure above. Changes in eNd values may be ascribed to the presence of different water masses; for example, a tongue of radiogenic LIW is clearly delineated from its eastern origin to the western basin.

Reference:

Garcia-Solsona, E., Pena, L. D., Paredes, E., Pérez-Asensio, J. N., Quirós-Collazos, L., Lirer, F., & Cacho, I. (2020). Rare earth elements and Nd isotopes as tracers of modern ocean circulation in the central Mediterranean Sea. Progress in Oceanography, 185, 102340. DOI: https://doi.org/10.1016/J.POCEAN.2020.102340

Latest highlights

North-South section of bioactive cadmium, nickel, zinc, copper and iron along GEOTRACES transect GP19 in the Pacific Ocean

Zheng and his colleagues propose the first full sections of the simultaneous dissolved distributions of five nutrient-type trace metals in the western South Pacific Ocean.

MOTES: a new facility designed for trace element sampling in seawater

Zhang and a group of engineers and researchers from Shanghai and Qingdao are presenting a modular trace element sampling facility.

A thorough estimate of the hydrothermal plumes on neodymium concentration and isotope oceanic cycles

Basak and co-workers investigated the influence of particulate matter on neodymium distributions in the Southern East Pacific Rise Hydrothermal Plume.

What are the drivers of the distributions of cadmium, nickel, zinc, copper and cobalt, manganese and aluminium in the Atlantic Ocean? Two papers are tackling this issue

Chen and co-authors reveal that the distributions of dissolved tracers at depth in the South Atlantic are predominantly controlled by the mixing of North Atlantic Deep Water and waters of Antarctic origin…

Rechercher