Radium quartet reveals no less than four main processes along the GEOTRACES North Atlantic Ocean section (30°N)

The four radium (Ra) isotopes (224Ra, 223Ra, 228Ra, 226Ra, “radium quartet”) are produced in situ via decay of their insoluble  thorium isotope parents in sediments from the continental margins and deep-sea and then released to the ocean. In the ocean, their distributions are controlled by particle removal (226Ra) and radioactive decay with four different half-lives. These properties make the “quartet” an invaluable tracer of coast-to-ocean processes and a water mass spreading chronometer.

Thanks to a dense and beautiful data set documenting the radium quartet along the 30°N GEOTRACES US section (GA03), Charette and co-authors (2015, see reference below) were able to identify:

  • a Mediterranean outflow spreading rate of 0.52-0.60 cm/s derived from 228Ra,
  • evidence of substantial sediment/water interaction in the benthic boundary layer along the oxygen minimum zones
  • decoupling between 223Ra and the other Ra isotope sources over the mid-Atlantic Ridge, and
  • significant continental inputs (e.g. submarine groundwater discharge) in the western Atlantic.

Last but not least, they conclude that the 228Ra inventories in the upper water column have remained constant over the past 40 years, which suggests that submarine groundwater discharge (the primary 228Ra source) is steady-state for the North Atlantic on decadal time scales.

15 Charette l
Figure. Box average 0-1000 m inventories (15° x 15°) of 228Ra (x 1010 atoms m-2) for samples collected on the GEOTRACES Atlantic section (GT) (2010-2011) and the Transient Tracers in the Ocean cruises (TTO) (1981-1986). Each solid black dot is a TTO station, each red x is a GT station. Click here to view the figure larger.

 

Reference:

Charette, M. A., Morris, P. J., Henderson, P. B., & Moore, W. S. (2015). Radium isotope distributions during the US GEOTRACES North Atlantic cruises. Marine Chemistry, In Press doi:10.1016/j.marchem.2015.01.001 Click here to access the paper.

 

Latest highlights

Science Highlights

The most important thorium-234 disequilibrium compilation you ever saw

Elena Ceballos-Romero and her colleagues propose a comprehensive global oceanic compilation of Thorium-234 measurements.

23.06.2022

Science Highlights

Machine learning approach led to the first iron climatology

Huang and co-workers propose the first data-driven surface-to-seafloor dissolved iron climatology.

21.06.2022

Science Highlights

Insight on the aluminium cycling during the inter-monsoon period in the Arabian Sea and Equatorial Indian Ocean

Full vertical water column profiles were established by Singh and Singh along the GI05 transect in the Indian Ocean during the fall inter-monsoon period in 2015.

Science Highlights

Distributions, boundary inputs, and scavenging processes of trace metals in the East Sea (Japan Sea)

Seo and his colleagues show pronounced atmospheric and shelf inputs of trace elements in the Japan Sea.

14.06.2022

Rechercher