Radium quartet reveals no less than four main processes along the GEOTRACES North Atlantic Ocean section (30°N)

The four radium (Ra) isotopes (224Ra, 223Ra, 228Ra, 226Ra, “radium quartet”) are produced in situ via decay of their insoluble  thorium isotope parents in sediments from the continental margins and deep-sea and then released to the ocean. In the ocean, their distributions are controlled by particle removal (226Ra) and radioactive decay with four different half-lives. These properties make the “quartet” an invaluable tracer of coast-to-ocean processes and a water mass spreading chronometer.

Thanks to a dense and beautiful data set documenting the radium quartet along the 30°N GEOTRACES US section (GA03), Charette and co-authors (2015, see reference below) were able to identify:

  • a Mediterranean outflow spreading rate of 0.52-0.60 cm/s derived from 228Ra,
  • evidence of substantial sediment/water interaction in the benthic boundary layer along the oxygen minimum zones
  • decoupling between 223Ra and the other Ra isotope sources over the mid-Atlantic Ridge, and
  • significant continental inputs (e.g. submarine groundwater discharge) in the western Atlantic.

Last but not least, they conclude that the 228Ra inventories in the upper water column have remained constant over the past 40 years, which suggests that submarine groundwater discharge (the primary 228Ra source) is steady-state for the North Atlantic on decadal time scales.

15 Charette l
Figure. Box average 0-1000 m inventories (15° x 15°) of 228Ra (x 1010 atoms m-2) for samples collected on the GEOTRACES Atlantic section (GT) (2010-2011) and the Transient Tracers in the Ocean cruises (TTO) (1981-1986). Each solid black dot is a TTO station, each red x is a GT station. Click here to view the figure larger.

 

Reference:

Charette, M. A., Morris, P. J., Henderson, P. B., & Moore, W. S. (2015). Radium isotope distributions during the US GEOTRACES North Atlantic cruises. Marine Chemistry, In Press doi:10.1016/j.marchem.2015.01.001 Click here to access the paper.

 

Latest highlights

Science Highlights

Loss of old Arctic sea ice increases methylmercury concentrations

Researchers from the SCRIPPS, the Stockholm Natural Museum and the Mediterranean Institute of Oceanography show the importance of sea ice composition on methylmercury budgets

02.09.2020

Science Highlights

Estimating Atmospheric Trace Element Deposition Over the Global Ocean

A recently developed method based on the natural radionuclide Be-7 has provided a means to estimate the bulk atmospheric trace element deposition velocity

Science Highlights

Dissolved gallium unravels Pacific and Atlantic waters in the Arctic Ocean

Whitmore and co-workers demonstrate that the dissolved gallium distribution provide a better water source deconvolution than the nutrient tracers

22.07.2020

Science Highlights

Precise estimate of the mercury export from the Arctic to the Atlantic Ocean

Using new observations acquired during GEOTRACES Arctic cruises, a refined arctic mercury budget has been established

21.07.2020

Rechercher