Particulate fluxes and circulation in a changing Arctic Ocean: tracer data and modeling

A complete review of published and new water column profiles of thorium-230 (230Th) and protactinium-231 (231Pa) concentrations and neodymium (Nd) isotopic compositions collected in the Amerasian Basin of the Arctic Ocean between 1983 and 2015 was performed by Grenier and co-workers (2019, see reference below). This review allowed them to identify regional and temporal variability of geochemical and physical oceanic properties, among which was a notable regional decrease in 230Th and 231Pa concentrations with time. They associated this decrease to an increase in the last decades of:

  • lateral and vertical particulate fluxes, resulting from enhanced sediment resuspension and productivity, respectively;
  • ocean mixing;

in response to increasing summer retreat of sea ice and enhanced coastal erosion.

These hypotheses were corroborated and complemented by a companion modeling paper, in which Yu and co-workers (2020) performed the first modeling of 230Th in the Arctic Ocean by coupling a physical model (NEMO configuration ANHA4) to a chemical scavenging one (230Th model). Their approach enabled them to characterize the relative contribution of the parameters – enhancement of particle fluxes vs. enhancement of ocean mesoscale mixing and advection– driving the modeled 230Th concentration decrease between 2002 and 2015.

2020, Grenier a
2020, Grenier
Figure: (a-b) From Grenier et al. (2019): regional and temporal variability of particulate fluxes and water mixing between the boundary and central part of the Canada Basin. (a) Comparison of 230Thd concentration (in fg kg-1) vertical profiles and potential temperature (in °C)-salinity profiles (with superimposed isopycnal σ0) at stations of very close location but of different sampling year. The 230Th minimum observed between 500 and 1000 m at CB4 (2015), not observed at station 3 (2000), suggests increased lateral advection of particles from the margins toward the central basin (corroborated by an associated maximum of particulate Fe at CB4, not shown here). The decrease in concentrations below 500 m between station 2700 in 2007 and L1.1 in 2009 suggests an increased contribution of boundary, 230Th-depleted water, mixing with overlying 230Th-enriched central water. These latter can also be identified in potential temperature-practical salinity profiles by thermohaline intrusions (McLaughlin et al., 2009), which are smoothed below 0.4°C (i.e. below 600 m depth) due to mixing with boundary water. (b) Schematic representation of the Canada Basin areas as defined from the 230Th profile features. Each station location is characterized following its degree of impact by coastal processes: weak, strong, or intermediate (white, black, and black/white filled circles, respectively), closely related to the extension of the boundary, northern, and mixed water areas. Color contours refer to the year of station sampling. Larger circles, cut in two halves, represent temporal variability of the spatial extension of boundary processes from the stations visited twice (a).
(c) From Yu et al. (2020): modeled contribution of sea ice retreat and ocean mixing increase to 230Th decrease. Time series of yearly and regionally averaged 230Th concentrations at 500 m in the Canada Basin. (1) Base Run (variable ocean flow and sea ice) versus Exp. 1, in which the ocean flow repeats 2002 and thus does not change with time. (2) Base Run versus Exp.2, where the sea ice is held at the 2002 level. These two comparisons show that the particle flux increase –defined as fully dependant on sea ice retreat– accounts for ~70% of the modeled 230Th concentration decrease since 2002, while the remaining ~30% decrease results from increases in ocean mesoscale mixing and advection.


Grenier, M., François, R., Soon, M., Rutgers van der Loeff, M., Yu, X., Valk, O., Not, C., S. Bradley Moran, S. B., Edwards, R. L., Lu, Y., Lepore, K., & Allen, S. E. (2019). Changes in Circulation and Particle Scavenging in the Amerasian Basin of the Arctic Ocean over the Last Three Decades Inferred from the Water Column Distribution of Geochemical Tracers. Journal of Geophysical Research: Oceans, 124(12), 9338–9363. DOI:

Yu, X., Allen, S. E., François, R., Grenier, M., Myers, P. G., & Hu, X. (2020). Modeling Dissolved and Particulate Th in the Canada Basin: Implications for Recent Changes in Particle Flux and Intermediate Circulation. Journal of Geophysical Research: Oceans, 125(2). DOI:

McLaughlin, F. A., Carmack, E. C., Williams, W. J., Zimmermann, S., Shimada, K., & Itoh, M. (2009). Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993–2007. Journal of Geophysical Research, 114, C00A12. DOI:

Latest highlights

Science Highlights

Irradiance-normalized non-photochemical quenching (NPQ): a new proxy of iron stress for phytoplankton

Ryan-Keogh and his colleagues used NPQ to fingerprint the photo-physiological response of phytoplankton to their environment.


Science Highlights

Exhaustive modelling study of the oceanic neodymium parameters

The conclusion of this study reinforces the important role of the solid particles in driving the neodymium oceanic cycle.


Science Highlights

Dissolved manganese distribution in the Arabian Sea reveals many variable triggers

Analysis of dissolved manganese on samples collected on GEOTRACES cruises allowed Singh and colleagues to establish its basin-wide distribution in the Arabian Sea.


Science Highlights

Do you want to know more about iron and its isotopes? This review is for you!

Authors present a comprehensive review of iron and iron isotope sources, internal cycling, and sinks in the ocean.