Organic copper complexation may stabilise seawater stable copper isotopic composition

Three deep-sea profiles were produced for the analysis of copper (Cu) concentration, along a transect covering very different biogeochemical regions: the oligotrophic North Tasman Sea (30ºS), the Tasman Front (40°S) and the productive waters of the Southern Ocean in the south (46°S).

Despite these differences, the Cu isotope composition of all three profiles was relatively homogenous. This homogeneity is attributed to the fact that more than 99% of the Cu is organically complexed, measured as part of the same study (Thompson et al, 2014; see references below). It is therefore argued that organic complexation stabilises heavy values of seawater stable copper isotopic composition (δ65Cu).

The authors also propose that decomposition of organic Cu complexes in environments such as anoxic basins may provide an isotopically heavy source of Cu for further scavenging and/or removal to the sediments. Such mechanism would help to balance the oceanic budget of δ65Cu, discussed in Little et al, 2014 (see reference below, and GEOTRACES science highlight).

14 Thompson l

Figure: Three dissolved copper concentration profiles versus depth (left panel) along with the isotope composition for dissolved copper (right panel). Samples were collected from three stations (P1, P2 and P3) occupied in the Tasman Sea region.

 

References :

Little, S. H., Vance, D., Walker-Brown, C., & Landing, W. M. (2014). The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125, 673–693. doi:10.1016/j.gca.2013.07.046 Click here to acces the paper.

Thompson, C.M., Ellwood, M.J., Sander, S.G., (2014). Dissolved copper speciation in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 164: 84-94. doi: 10.1016/j.marchem.2014.06.003 Click here to access the paper.

Thompson, C.M., Ellwood, M.J., (2014). Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 165: 1-9. doi: 10.1016/j.marchem.2014.06.009 Click here to access the paper.

Latest highlights

Warning on Polonium-210/Lead-210 data quality!

Alerted by the fact that the published Polonium-210:Lead-210 profiles showed ubiquitous disequilibrium in the deep ocean, Mark Baskaran and colleague conducted a critical review…

Substantial trace metal input from the 2022 Hunga Tonga-Hunga Ha’apai eruption into the South Pacific Ocean

Zhang and co-workers investigate the impact of the 2022 eruption on the biogeochemistry of the South Pacific Gyre.

Lead isotopes, reversible scavenging and ventilation processes in the South Atlantic Ocean

Olivelli and co-authors present seawater lead concentrations and lead isotopes for 10 depth profiles collected in the South Atlantic Ocean.

Iron limitation also affects the twilight zone

Li and co-workers established the distribution and uptake of siderophores along the Pacific meridional section (GP15 GEOTRACES cruise)…

Rechercher