Organic copper complexation may stabilise seawater stable copper isotopic composition

Three deep-sea profiles were produced for the analysis of copper (Cu) concentration, along a transect covering very different biogeochemical regions: the oligotrophic North Tasman Sea (30ºS), the Tasman Front (40°S) and the productive waters of the Southern Ocean in the south (46°S).

Despite these differences, the Cu isotope composition of all three profiles was relatively homogenous. This homogeneity is attributed to the fact that more than 99% of the Cu is organically complexed, measured as part of the same study (Thompson et al, 2014; see references below). It is therefore argued that organic complexation stabilises heavy values of seawater stable copper isotopic composition (δ65Cu).

The authors also propose that decomposition of organic Cu complexes in environments such as anoxic basins may provide an isotopically heavy source of Cu for further scavenging and/or removal to the sediments. Such mechanism would help to balance the oceanic budget of δ65Cu, discussed in Little et al, 2014 (see reference below, and GEOTRACES science highlight).

14 Thompson l

Figure: Three dissolved copper concentration profiles versus depth (left panel) along with the isotope composition for dissolved copper (right panel). Samples were collected from three stations (P1, P2 and P3) occupied in the Tasman Sea region.

 

References :

Little, S. H., Vance, D., Walker-Brown, C., & Landing, W. M. (2014). The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125, 673–693. doi:10.1016/j.gca.2013.07.046 Click here to acces the paper.

Thompson, C.M., Ellwood, M.J., Sander, S.G., (2014). Dissolved copper speciation in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 164: 84-94. doi: 10.1016/j.marchem.2014.06.003 Click here to access the paper.

Thompson, C.M., Ellwood, M.J., (2014). Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 165: 1-9. doi: 10.1016/j.marchem.2014.06.009 Click here to access the paper.

Latest highlights

Science Highlights

Spatial and temporal variability of bioactive trace metals, speciation and organic metal-binding ligands in the eastern Gulf of Mexico

Mellett and Buck present the concentrations of bioactive trace metals (Fe, Cu, Mn, Zn, Co, Ni, Cd, and Pb), Fe-and Cu-binding organic ligands, and electroactive Fe-binding humic substances in the eastern Gulf of Mexico.

03.03.2021

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean.

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Rechercher