On the optimal use of the seaFAST system

Do you wish to improve your recoveries, blanks or any other parameter of your seawater preconcentration system (seaFAST)? Or are you simply curious about it? Wuttig and co-workers (2019, see reference below) propose a critical evaluation of this system’s capabilities. They perform an impressive list of tests including system conditioning, improving blank levels, finding the optimal pH of the buffer, improving preconcentration factors for different sample matrices, estimating memory effects, the initial sample salinity and UV oxidation effects on trace element concentrations. These tests considered an array of trace elements (cadmium, cobalt, copper, iron, gallium, manganese, nickel, lead, titanium and zinc) using SF-ICP-MS with data validation for some of these trace elements by flow injection analysis (iron, manganese) and/or GEOTRACES (n=42 for GSP and GSC) reference samples. They eventually make a long and useful list of recommendations for an optimal use of the system.

19 Wuttig

Figure: During this work, a commercially available seaFAST preconcentration system combined with sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) was utilised to measure six reference seawaters (SAFe S, D1 and D2; GEOTRACES GD, GSC and GSP) 3-42 times each. In this figure, our measured values were compared to the consensus values for copper (Cu), iron (Fe), manganese (Mn) and Titanium (Ti). Titanium is a novel element for this system with limited consensus values available and was compared to values determined with voltammetry by Croot, 2011. Errors are presented as 1 standard deviation (σ) for both consensus and the measured values. Note different scales for Ti.

Reference:

Wuttig, K., Townsend, A. T., van der Merwe, P., Gault-Ringold, M., Holmes, T., Schallenberg, C., Latour, P., Tonnard, M., Rijkenberg, M. J.A., Lannuzel, D., Bowie, A. R. (2019). Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta, 197, 653–668. DOI: http://doi.org/10.1016/J.TALANTA.2019.01.047

Croot, P.L., Rapid determination of picomolar titanium in seawater with catalytic cathodic stripping voltammetry, Anal Chem 83(16) (2011) 6395-400.

Latest highlights

Deep-sea mining, dewatering waste, accidental plumes and their potential consequences on trace metal fates in the North Pacific Ocean

Xiang and his colleagues conducted laboratory incubation experiments that simulate mining discharge into anoxic waters.

Biogeochemical behaviours of barium and radium-226 in the Pacific Ocean

Barium and radium-226 are not just proxies for nutrients and ocean circulation but are themselves marine biogeochemical tracers…

Intrigued by Rare Earth Elements and neodymium isotopes? A review for the curious

Vanessa Hatje and a group of Rare Earth Element (REE) specialists propose an exhaustive review on the behaviour of REE.

North-South section of bioactive cadmium, nickel, zinc, copper and iron along GEOTRACES transect GP19 in the Pacific Ocean

Zheng and his colleagues propose the first full sections of the simultaneous dissolved distributions of five nutrient-type trace metals in the western South Pacific Ocean.

Rechercher