On the optimal use of the seaFAST system

Do you wish to improve your recoveries, blanks or any other parameter of your seawater preconcentration system (seaFAST)? Or are you simply curious about it? Wuttig and co-workers (2019, see reference below) propose a critical evaluation of this system’s capabilities. They perform an impressive list of tests including system conditioning, improving blank levels, finding the optimal pH of the buffer, improving preconcentration factors for different sample matrices, estimating memory effects, the initial sample salinity and UV oxidation effects on trace element concentrations. These tests considered an array of trace elements (cadmium, cobalt, copper, iron, gallium, manganese, nickel, lead, titanium and zinc) using SF-ICP-MS with data validation for some of these trace elements by flow injection analysis (iron, manganese) and/or GEOTRACES (n=42 for GSP and GSC) reference samples. They eventually make a long and useful list of recommendations for an optimal use of the system.

19 Wuttig

Figure: During this work, a commercially available seaFAST preconcentration system combined with sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) was utilised to measure six reference seawaters (SAFe S, D1 and D2; GEOTRACES GD, GSC and GSP) 3-42 times each. In this figure, our measured values were compared to the consensus values for copper (Cu), iron (Fe), manganese (Mn) and Titanium (Ti). Titanium is a novel element for this system with limited consensus values available and was compared to values determined with voltammetry by Croot, 2011. Errors are presented as 1 standard deviation (σ) for both consensus and the measured values. Note different scales for Ti.

Reference:

Wuttig, K., Townsend, A. T., van der Merwe, P., Gault-Ringold, M., Holmes, T., Schallenberg, C., Latour, P., Tonnard, M., Rijkenberg, M. J.A., Lannuzel, D., Bowie, A. R. (2019). Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta, 197, 653–668. DOI: http://doi.org/10.1016/J.TALANTA.2019.01.047

Croot, P.L., Rapid determination of picomolar titanium in seawater with catalytic cathodic stripping voltammetry, Anal Chem 83(16) (2011) 6395-400.

Latest highlights

A thorough estimate of the hydrothermal plumes on neodymium concentration and isotope oceanic cycles

Basak and coworkers investigated the influence of particulate matter on neodymium distributions in the Southern East Pacific Rise Hydrothermal Plume.

What are the drivers of the distributions of cadmium, nickel, zinc, copper and cobalt, manganese and aluminium in the Atlantic Ocean? Two papers are tackling this issue

The authors reveal that the distributions of dissolved tracers at depth in the South Atlantic are predominantly controlled by the mixing of North Atlantic Deep Water and waters of Antarctic origin…

Disentangling the sources and transport of iron in the Southern Ocean using a water mass mixing model analysis

Traill and co-workers used an extended optimum multiparameter analysis water‐mass mixing model…

A detailed investigation of iron complexation by organic ligands in the Western Tropical South Pacific Ocean

Léo Mahieu and his co-workers present the conditional concentration and binding-strength of iron-binding ligands during the GEOTRACES TONGA cruise.

Rechercher