GEOTRACES scientists discover new variability in iron supply to the oceans with climate implications

Researchers based at the National Oceanography Centre Southampton (UK) and at the University of South Carolina (USA) have found that the amount of dissolved iron released into the ocean from continental margins displays variability not currently captured by ocean-climate prediction models. This could alter predictions of future climate change because iron, a key micronutrient, plays an important role in the global carbon cycle. The amount of iron leaking from continental margins sediments was previously assumed to reflect rates of microbial activity within the sediments. Dr. William Homoky and co-authors found that rate of iron released from seafloor sediments close to continents is actually far more varied between regions because of local differences in weathering and erosion on land. The results of this study, which formed part of the GEOTRACES International Programme, are published in Nature Communications.

13 Homokyetal
Figure: The image shows a satellite-captured view of a productive ocean margin in the western South Atlantic Ocean. Visible milky-blue swirls of ocean colour are blooms of tiny phytoplankton taking up carbon dioxide in the surface ocean. These blooms are caused by ocean currents, which stir nutrient laden waters from the continental margins into the sunlit surface ocean. Rivers, like the South American Río de la Plata or River Plate shown here, are an important source of nutrient-rich material to shelf systems. Credit: NASA http://visibleearth.nasa.gov/view.php?id=75351

Reference:

Homoky, W. B. et al. Distinct iron isotopic signatures and supply from marine sediment dissolution (2013), Nature Communications, 4:2143, DOI: 10.1038/ncomms3143. Click here to download the paper.

Latest highlights

MOTES: a new facility designed for trace element sampling in seawater

Zhang and a group of engineers and researchers from Shanghai and Qingdao are presenting a modular trace element sampling facility.

A thorough estimate of the hydrothermal plumes on neodymium concentration and isotope oceanic cycles

Basak and co-workers investigated the influence of particulate matter on neodymium distributions in the Southern East Pacific Rise Hydrothermal Plume.

What are the drivers of the distributions of cadmium, nickel, zinc, copper and cobalt, manganese and aluminium in the Atlantic Ocean? Two papers are tackling this issue

Chen and co-authors reveal that the distributions of dissolved tracers at depth in the South Atlantic are predominantly controlled by the mixing of North Atlantic Deep Water and waters of Antarctic origin…

Disentangling the sources and transport of iron in the Southern Ocean using a water mass mixing model analysis

Traill and co-workers used an extended optimum multiparameter analysis water‐mass mixing model to determine the interplay between physical and biological processes, and sources/sinks driving dissolved iron distributions…

Rechercher