New trace metal data in the Seas of Japan and Okhotsk

Yuzuru Nakaguchi and his colleagues (2022, see references below) realized full-depth and section distributions of the dissolved (d), total dissolvable (td), and labile particulate (lp) phases of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater samples collected from the Seas of Japan and Okhotsk during the GEOTRACES-Japan program. This allowed these authors to establish that:

  • Although high lpM/tdM ratios suggest active scavenging in the Seas of Japan and Okhotsk, the distributions of trace metals in seawater are distinct between the two seas, reflecting an interplay between the circulation (advection of deep waters from the Pacific Ocean) and margin inputs.
  • In the surface waters of the Sea of Japan, enrichment factor (EF) values of dMn, dCo, dNi, dCu, dZn, dCd, and dPb range within 103–106, implying that these elements are supplied from anthropogenic sources via the atmosphere. In the Sea of Okhotsk, the concentrations of dAl, lpAl, dMn, lpMn, dFe, lpFe, dCo, and lpCo were high owing to supply from continental sources via the Amur River and atmosphere, although less contaminated than in the Sea of Japan.
  • However, trace metal enrichments due to margin inputs and the lateral transport of Mn, Fe, and Co by the Okhotsk Sea intermediate water (OSIW) can be an important source for the North Pacific Intermediate Waters (NPIW).

Figure: Distribution of dissolved Mn (dMn), labile particulate Mn (lpMn), and the lpMn/total dissolvable Mn (tdMn) ratio in the Seas of Japan and Okhotsk. In the Japan Sea, dMn is high in surface water and low in deep water (> 1000 m depth), where lpMn accounts for >70% of tdMn. In contrast, dMn has a maximum at intermediate depths in the Okhotsk Sea. dMn and lpMn around σ0 = 26.9 are entrained into the Okhotsk Sea intermediate water (OSIW).

Reference:

Nakaguchi, Y., Sakamoto, A., Asatani, T., Minami, T., Shitashima, K., Zheng, L., & Sohrin, Y. (2022). Distribution and stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Seas of Japan and Okhotsk. Marine Chemistry, 241, 104108. Access the paper: https://doi.org/10.1016/j.marchem.2022.104108

Latest highlights

Science Highlights

Decline of the anthropogenic lead imprint to the ocean confirmed by data from the South West Atlantic Ocean

This study reveals that the mean lead concentrations in the surface waters of the western South Atlantic Ocean decreased by 34 % between the 1990s and 2011.

29.03.2023

Science Highlights

Irradiance-normalized non-photochemical quenching (NPQ): a new proxy of iron stress for phytoplankton

Ryan-Keogh and his colleagues used NPQ to fingerprint the photo-physiological response of phytoplankton to their environment.

06.03.2023

Science Highlights

Exhaustive modelling study of the oceanic neodymium parameters

The conclusion of this study reinforces the important role of the solid particles in driving the neodymium oceanic cycle.

02.03.2023

Science Highlights

Dissolved manganese distribution in the Arabian Sea reveals many variable triggers

Analysis of dissolved manganese on samples collected on GEOTRACES cruises allowed Singh and colleagues to establish its basin-wide distribution in the Arabian Sea.

01.03.2023

Rechercher