More realistic oceanic particle field improved the thorium-230 and protactinium-231 modeling

Thorium-230 (230Th) and protactinium-231 (231Pa) are two geochemical tracers extensively used for investigating particle transport in the ocean and reconstructing past ocean circulation. A key feature in reproducing their distributions by modelling is to understand and constrain as good as possible the scavenging processes, which means: 1) having the good adsorption-desorption kinetic rates and 2) describing the up to date best particle field. The later was challenged by the NEMO-PISCES team who considerably improved the particle field description of the NEMO-PISCES model. This recent development allowed van Hulten and co-workers (2018, see reference below) to propose a new simulation of 230Th and 231Pa using a version called NEMO-ProThorP 0.1 in which the dust lithogenic particles were added. Although nepheloid and hydrothermal particles are still missing to better simulate the particle field this new version provides satisfying distributions of both tracers. Thanks to the GEOTRACES field database, comparison of the model results to the measured ones shows more realistic partition coefficients than what was simulated so far. Although further improvements are still needed, this work is an important step forward in our understanding of these tracer behaviors in the ocean.

18 vanHulten l

Figure: Modelled dissolved thorium-230 activity at four depth level (mBqm−3 ); observations are represented as discs on the same colour scale. Click here to view the figure larger.

Reference:

van Hulten, M., Dutay, J.-C., & Roy-Barman, M. (2018). A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1). Geoscientific Model Development, 11(9), 3537–3556. DOI: http://doi.org/10.5194/gmd-11-3537-2018

Latest highlights

Science Highlights

Controls of cadmium-phosphate systematic unraveled by Neural Networks and Ocean Circulation Inverse Model

Roshan and DeVries explore the similarities and contrasts between oceanic cadmium and phosphate cycles using an Artificial Neural Network mapping technique and Ocean Circulation Inverse Model.

23.06.2021

Science Highlights

Retreat of large marine-terminating glaciers may increase iron supply to surface waters

The findings demonstrate that glacial retreat and loss of ice-shelves may potentially result in increases in dissolved Fe supply to surface waters downstream of large marine terminating glaciers in future.

31.05.2021

Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of two increase over previous estimates having important implications for the global silicon cycle.

21.05.2021

Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of neodymium isotopes as a useful tracer of ocean circulation.

05.05.2021

Rechercher