Methylmercury subsurface maxima explain mercury accumulation in Canadian Arctic marine mammals

Mercury (Hg) concentrations in Canadian Arctic marine mammals were monitored during the last four decades and found to be highly elevated, frequently exceeding toxicity thresholds. Mercury concentrations in marine biota are also found to be generally higher in the western part of the Canadian Arctic than in the east. Thanks to the Canadian Arctic GEOTRACES cruise, Wang and co-authors (2018, see reference below) carried out a high-resolution total mercury and methylmercury (MeHg) measurements from the Canada Basin in the west to the Labrador Sea in the east. Total Hg concentrations show a distinctive longitudinal gradient along the transect with concentrations increasing from the Canada Basin eastward through the Canadian Arctic Archipelago to Baffin Bay, which is opposite to the spatial gradient in mammal Hg.

What is remarkable is the distribution patterns of MeHg. The authors found that MeHg concentrations are lowest at the surface, peak in a subsurface layer (~100–300 m), and subsequently decrease towards the bottom. Longitudinally, the subsurface MeHg peak value is highest in the western part of the section and decreases towards the east, eventually reaching its lowest values in the Labrador Sea. Given that it is MeHg that accumulates and biomagnifies in marine biota and that the MeHg subsurface maxima lie within the depths where Arctic marine biota reside, this gradient readily explains the spatial distribution of Hg levels observed in Canadian Arctic mammals.

Elucidating the processes that generate and maintain this subsurface MeHg maximum is the next challenge…

Figure: Mercury (Hg) concentrations in the marine food web and seawater across the Canadian Arctic and Labrador Sea (Wang et al. 2018). Upper panel: Map of Hg (as total Hg or monomethylmercury) concentrations in two zooplankton species, ringed seals and polar bears along the Canadian GEOTRACES transect based on data collected between 1998 and 2012. Lower panel: Methylmercury (MeHg) concentrations in seawater along the same transect as determined during the 2015 Canadian Arctic GEOTRACES.  Click here to view the image larger.

Reference:

Wang, K., Munson, K. M., Beaupré-Laperrière, A., Mucci, A., Macdonald, R. W., & Wang, F. (2018). Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. Scientific Reports, 8(1), 14465. DOI:  http://doi.org/10.1038/s41598-018-32760-0

Latest highlights

Science Highlights

The most important thorium-234 disequilibrium compilation you ever saw

Elena Ceballos-Romero and her colleagues propose a comprehensive global oceanic compilation of Thorium-234 measurements.

23.06.2022

Science Highlights

Machine learning approach led to the first iron climatology

Huang and co-workers propose the first data-driven surface-to-seafloor dissolved iron climatology.

21.06.2022

Science Highlights

Insight on the aluminium cycling during the inter-monsoon period in the Arabian Sea and Equatorial Indian Ocean

Full vertical water column profiles were established by Singh and Singh along the GI05 transect in the Indian Ocean during the fall inter-monsoon period in 2015.

Science Highlights

Distributions, boundary inputs, and scavenging processes of trace metals in the East Sea (Japan Sea)

Seo and his colleagues show pronounced atmospheric and shelf inputs of trace elements in the Japan Sea.

14.06.2022

Rechercher