High production of methylmercury in the anoxic waters of the Black Sea

As part of the GEOTRACES MedBlack cruise, the research vessel Pelagia occupied 12 full-depth stations in the Black Sea along an East-West transect between July 13th and 25th, 2013. In the permanently anoxic waters of the Black Sea, a high fraction (up to 57%) of total mercury (HgT) was found to be methylmercury (MeHg). These levels are comparable to oxic open-ocean subsurface maxima. Using a 1D numerical model, the authors demonstrated that MeHg inputs from rivers, the Mediterranean Sea and sediments are negligible and that MeHg is produced in situ in the anoxic waters. The authors also reported an increasing trend of HgT and MeHg concentrations in the anoxic waters. The numerical modeling suggests that more drastic reductions of Hg emissions are required to reach decreasing Hg and MeHg levels in the Black Sea.

18 RosatiFigure: Concentrations of Hg species in the water column (OL = oxic layer, SOL = suboxic layer, AOL = anoxic layer) and sediments of the Black Sea. a) observed methylmercury (MeHg) distribution across the sampling stations of the GEOTRACES cruise; b) profile of dissolved Hg (HgD) observed (circles = layer means, bars = standard deviations) and modeled (triangles = model mean, coloured area = range of modeled concentrations) in the water; c) concentrations of total Hg (HgT) observed and modeled in the sediments. Click here to view the figure larger.

Reference:

Rosati, G., Heimbürger, L. E., Melaku Canu, D., Lagane, C., Laffont, L., Rijkenberg, M. J. A., Gerringa, L. J. A., Solidoro, C., Gencarelli, C. N., Hedgecock, I. M., De Baar, H. J. W., Sonke, J. E. (2018). Mercury in the Black Sea: new insights from measurements and numerical modeling. Global Biogeochemical Cycles. http://doi.org/10.1002/2017GB005700

Latest highlights

MOTES: a new facility designed for trace element sampling in seawater

Zhang and a group of engineers and researchers from Shanghai and Qingdao are presenting a modular trace element sampling facility.

A thorough estimate of the hydrothermal plumes on neodymium concentration and isotope oceanic cycles

Basak and co-workers investigated the influence of particulate matter on neodymium distributions in the Southern East Pacific Rise Hydrothermal Plume.

What are the drivers of the distributions of cadmium, nickel, zinc, copper and cobalt, manganese and aluminium in the Atlantic Ocean? Two papers are tackling this issue

Chen and co-authors reveal that the distributions of dissolved tracers at depth in the South Atlantic are predominantly controlled by the mixing of North Atlantic Deep Water and waters of Antarctic origin…

Disentangling the sources and transport of iron in the Southern Ocean using a water mass mixing model analysis

Traill and co-workers used an extended optimum multiparameter analysis water‐mass mixing model to determine the interplay between physical and biological processes, and sources/sinks driving dissolved iron distributions…

Rechercher