Mercury stable isotopes constrain atmospheric pathways to the ocean


Mercury is one of the least concentrated trace elements in the ocean. Yet, the small seawater Hg levels biomagnify million times along the marine food chain, to reach harmful levels in predatory fish and their human consumers. Natural and anthropogenic Hg sources to the ocean remain ill-constrained. It took 10 years of development to come up with a method to measure Hg stable isotopes of seawater at subpicomolar levels. The Hg isotopic signatures in the ocean suggest the gas uptake (Hg0) and ionic deposition (HgII) are equally important (1:1), which is contrary than our current understanding (1:3)[1].  HgII deposition is likely overestimated by 2 to 3-fold, and the ocean receives less Hg overall. The study’s results hold promise that the implementation of anti-pollution measures under the Minamata Convention[2] will likely result in a faster decrease of oceanic Hg levels than previously thought.  

Figure: Summary of marine HgII deposition and Hg0 air-sea exchange fluxes. Gross fluxes (solid arrows, Mg y-1) are based on published model estimates. Hg0exchange is bidirectional. Marine Δ200Hg signatures of 0.04‰ indicate a relatively more important contribution of the atmospheric Hg0 end-member to marine Hg than current 3D models suggest. This indicates that either 3D model HgII deposition is likely overestimated (black dotted arrows, indicating 2–3 times lower, required to fit Δ200Hg data).

Reference:

Jiskra, M., Heimbürger-Boavida, L., Desgranges, M., Petrova, M., Dufour, A., Ferreira-Araujo, B., Masbou, J., Chmeleff, J., Thyssen, M., Point, D., Sonke, J. E. Mercury stable isotopes constrain atmospheric sources to the ocean. Nature, https://doi.org/10.1038/s41586-021-03859-8


[1] https://www.unep.org/resources/publication/global-mercury-assessment-2018

[2] https://www.mercuryconvention.org/en

Latest highlights

Science Highlights

Tracing dust deposition with aluminium and silicate at a resolution never reached before

Benaltabet and his colleagues propose a study of the dissolved aluminium and silicate fate in the Gulf of Aqaba (Red Sea).

24.01.2023

Science Highlights

Actinium-227 distribution traces at least three processes in the North Atlantic Ocean

Le Roy and colleagues report an oceanic section of Actinium-227 in the North Atlantic Ocean.

23.01.2023

Science Highlights

Do you want to know more about iron and its isotopes? This review is for you!

Authors present a comprehensive review of iron and iron isotope sources, internal cycling, and sinks in the ocean.

17.01.2023

Science Highlights

Different fates of four poorly soluble trace elements in the Pacific Ocean

Zheng and co-authors present the full-depth distributions of aluminum, lead, manganese and copper in the western South Pacific.

24.11.2022

Rechercher