Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese

Marco van Hulten and co-workers (2017, see reference below) ran a global ocean model to understand manganese (Mn), a biologically essential element. The model shows that:

(i) in the deep ocean, dissolved [Mn] is mostly homogeneous ~0.10—0.15 nM. The model reproduces this with a threshold on MnO₂ of 25 pM, suggesting a minimal particle concentration is needed before aggregation and removal become efficient.

(ii) The observed distinct hydrothermal signals are produced by assuming both a strong source and a strong removal of Mn near hydrothermal vent.

17 vanHulten l2Figure: (A) The modelled dissolved [Mn] (nM) at the Zero-Meridian section component of the GIPY5 cruise dataset, and the West Atlantic GA02 GEOTRACES section cruise (annual average). Observations at the transects are presented as coloured dots. (B) Worldmap showing cruise transects for GA02 (red) and GIPY5 (green, in the Atlantic sector of the Southern Ocean). Please click here to view the figure larger. Modified from Biogeosciences.


van Hulten, M., Middag, R., Dutay, J.-C., de Baar, H., Roy-Barman, M., Gehlen, M., Tagliabue, A., and Sterl, A. (2017) Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese, Biogeosciences, 14, 1123-1152. DOI: 10.5194/bg-14-1123-2017.

Latest highlights

A detailed investigation of iron complexation by organic ligands in the Western Tropical South Pacific Ocean

Léo Mahieu and his co-workers present the conditional concentration and binding-strength of iron-binding ligands during the GEOTRACES TONGA cruise.

New algorithm unclogs major bottleneck in ocean geochemical and biogeochemical modelling

Numerical models are some of the principal tools for understanding the cycling of geochemical and biogeochemical tracers in the ocean…

The tumultuous life of the Antarctic Circumpolar Current over 5,3 million years, including focus on the glacial-interglacial forcing!

To reconstruct the strength of the Antarctic Circumpolar Current, the authors used sediment records from the pelagic central and remote South Pacific.

North-South radium-228 section in the Pacific Ocean

Moore and colleagues present results from radium-228 along the U.S. GEOTRACES Pacific Meridional Transect (GP15).