Lithogenic influence from the Hawaiian Islands detectable up to Station ALOHA surface waters

By coupling neodymium (Nd) and radium (Ra) isotopes and Rare Earth Element (REE) signals, Henning Fröllje and co-workers (2016, see reference below) show that the coastal Hawaiian waters are affected by a prominent lithogenic influence from the Hawaiian Islands. Rare earth patterns, radiogenic εNd signatures and high 228Ra levels are clearly tracing this influence. Moreover, it is perceptible as far as ALOHA station (100 km north). This influence at ALOHA is most pronounced in February, when precipitation on the islands is highest and dust input from Asia is low. In summer, however, Nd isotopes are shifted towards the Asian dust endmember (εNd = -10), indicating seasonal dust influence overlying the Hawaiian background signal.

A close study of the rare earth distribution and speciation confirm that these elements are truly dissolved in seawater and that they are following water mass advection and mixing in the intermediate and deep central North Pacific Ocean.

16 Frolijel
Figure: Location of station ALOHA and sampling stations around Oahu, Hawaii, along with εNd and Nd concentration profiles. ALOHA full water column: εNd, Nd concentrations, and Radium-228 at ALOHA. Seasonal: seasonal εNd of the upper 800m, showing a shift to higher dust influence in June-August compared to February. Oahu: εNd and Nd concentration profiles at coastal sites around Oahu.


Fröllje, H., Pahnke, K., Schnetger, B., Brumsack, H.-J., Dulai, H., & Fitzsimmons, J. N. (2016). Hawaiian imprint on dissolved Nd and Ra isotopes and rare earth elements in the central North Pacific: Local survey and seasonal variability. Geochimica et Cosmochimica Acta, 189, 110–131. doi:10.1016/j.gca.2016.06.001

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.


Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean


Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.


Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…