Lithogenic influence from the Hawaiian Islands detectable up to Station ALOHA surface waters

By coupling neodymium (Nd) and radium (Ra) isotopes and Rare Earth Element (REE) signals, Henning Fröllje and co-workers (2016, see reference below) show that the coastal Hawaiian waters are affected by a prominent lithogenic influence from the Hawaiian Islands. Rare earth patterns, radiogenic εNd signatures and high 228Ra levels are clearly tracing this influence. Moreover, it is perceptible as far as ALOHA station (100 km north). This influence at ALOHA is most pronounced in February, when precipitation on the islands is highest and dust input from Asia is low. In summer, however, Nd isotopes are shifted towards the Asian dust endmember (εNd = -10), indicating seasonal dust influence overlying the Hawaiian background signal.

A close study of the rare earth distribution and speciation confirm that these elements are truly dissolved in seawater and that they are following water mass advection and mixing in the intermediate and deep central North Pacific Ocean.

16 Frolijel
Figure: Location of station ALOHA and sampling stations around Oahu, Hawaii, along with εNd and Nd concentration profiles. ALOHA full water column: εNd, Nd concentrations, and Radium-228 at ALOHA. Seasonal: seasonal εNd of the upper 800m, showing a shift to higher dust influence in June-August compared to February. Oahu: εNd and Nd concentration profiles at coastal sites around Oahu.

Reference:

Fröllje, H., Pahnke, K., Schnetger, B., Brumsack, H.-J., Dulai, H., & Fitzsimmons, J. N. (2016). Hawaiian imprint on dissolved Nd and Ra isotopes and rare earth elements in the central North Pacific: Local survey and seasonal variability. Geochimica et Cosmochimica Acta, 189, 110–131. doi:10.1016/j.gca.2016.06.001

Latest highlights

Trace metal fluxes of cadmium, copper, lead and zinc from the Congo River into the South Atlantic Ocean are supplemented by atmospheric inputs

Liu and colleagues show that rainfall augments some fluxes of trace metals from the Congo River.

Aluminium, manganese, iron, cobalt, and lead display contrasting fate along north–south and east–west sections in the North Pacific Ocean

Chan et co-authors provide a comprehensive view of trace metal distribution in the subarctic Pacific Ocean.

Trans Polar Drift transport controls the dissolved copper-organic binding ligand distribution

Arnone and her colleagues report the concentrations and conditional stability constants of dissolved copper-binding ligands in the Arctic Ocean…

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the widespread belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

Rechercher