Lithogenic influence from the Hawaiian Islands detectable up to Station ALOHA surface waters

By coupling neodymium (Nd) and radium (Ra) isotopes and Rare Earth Element (REE) signals, Henning Fröllje and co-workers (2016, see reference below) show that the coastal Hawaiian waters are affected by a prominent lithogenic influence from the Hawaiian Islands. Rare earth patterns, radiogenic εNd signatures and high 228Ra levels are clearly tracing this influence. Moreover, it is perceptible as far as ALOHA station (100 km north). This influence at ALOHA is most pronounced in February, when precipitation on the islands is highest and dust input from Asia is low. In summer, however, Nd isotopes are shifted towards the Asian dust endmember (εNd = -10), indicating seasonal dust influence overlying the Hawaiian background signal.

A close study of the rare earth distribution and speciation confirm that these elements are truly dissolved in seawater and that they are following water mass advection and mixing in the intermediate and deep central North Pacific Ocean.

16 Frolijel
Figure: Location of station ALOHA and sampling stations around Oahu, Hawaii, along with εNd and Nd concentration profiles. ALOHA full water column: εNd, Nd concentrations, and Radium-228 at ALOHA. Seasonal: seasonal εNd of the upper 800m, showing a shift to higher dust influence in June-August compared to February. Oahu: εNd and Nd concentration profiles at coastal sites around Oahu.

Reference:

Fröllje, H., Pahnke, K., Schnetger, B., Brumsack, H.-J., Dulai, H., & Fitzsimmons, J. N. (2016). Hawaiian imprint on dissolved Nd and Ra isotopes and rare earth elements in the central North Pacific: Local survey and seasonal variability. Geochimica et Cosmochimica Acta, 189, 110–131. doi:10.1016/j.gca.2016.06.001

Latest highlights

Warning on Polonium-210/Lead-210 data quality!

Alerted by the fact that the published Polonium-210:Lead-210 profiles showed ubiquitous disequilibrium in the deep ocean, Mark Baskaran and colleague conducted a critical review…

Substantial trace metal input from the 2022 Hunga Tonga-Hunga Ha’apai eruption into the South Pacific Ocean

Zhang and co-workers investigate the impact of the 2022 eruption on the biogeochemistry of the South Pacific Gyre.

Lead isotopes, reversible scavenging and ventilation processes in the South Atlantic Ocean

Olivelli and co-authors present seawater lead concentrations and lead isotopes for 10 depth profiles collected in the South Atlantic Ocean.

Iron limitation also affects the twilight zone

Li and co-workers established the distribution and uptake of siderophores along the Pacific meridional section (GP15 GEOTRACES cruise)…

Rechercher