Insights into Particle Cycling from Thorium and Particle Data

Phoebe Lam and Olivier Marchal (2015, see reference below) propose to describe, with the same model, the dynamics of particles in the oceanic water column and its effects –on four different tracers characterized by very distinct sources and sinks. The considered tracers are: Particulate Organic Carbon (POC) (a biogenic compound), barium (Ba) (an authigenic mineral), titanium (Ti) (mainly lithogenic), and thorium isotopes (a particle-reactive radionuclide). Thorium isotopes are used for the estimation of exchange rates between small and large particles and for the estimation of particle settling velocities.  Lessons learned from thorium isotopes may be applied to understand other classes of particle tracers such as POC, Ba, and Ti.

Main results:

  • The separation of oceanic particles in two distinct classes (small, suspended particles and large, sinking particles), which interact throughout the water column via aggregation and disaggregation processes, remains a useful description of particle cycling, provided its limitations are fully appreciated.
  • The simple models currently used in marine particle research (small particles are suspended and interact with seawater, large particles are removed by sinking, small and large particles interact throughout the water column, …) allow one to reproduce the observed vertical distributions of a range of chemical substances in the ocean, such as POC, Ba, Ti, and 230Th, in spite of their distinct sources and sinks as well as reactivities.

15 Lam l
Figure: Schematic depiction of the biological carbon pump, emphasizing the important particle dynamics processes: aggregation (red arrows ), sinking (black arrows), disaggregation (dark blue arrows), and remineralization (light blue arrows). Particles in the small, suspended size fraction (brown) comprise phytoplankton, authigenic particles, and lithogenic particles and do not sink  or sink very slowly. Particles in the large, sinking size fraction (green) comprise fecal material and aggregates of smaller particles and do sink. Aggregation can be abiotic or mediated by zooplankton packaging through fecal pellet production. Click here to view the figure larger.


Reference :

Lam, P. J., & Marchal, O. (2015). Insights into Particle Cycling from Thorium and Particle Data. Annual Review of Marine Science, 7, 159–184. doi:10.1146/annurev-marine-010814-015623 Click here to access the paper.


Latest highlights

Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of Nd isotopes as a useful tracer of ocean circulation.


Science Highlights

Neodymium concentrations and isotopes help disentangling Siberian river influences on the Arctic Ocean

Paffrath and co-autors followed the relative contributions of the main Siberian rivers to the waters of the Transpolar Drift using neodymium parameters.

Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of 2 increase over previous estimates having important implications for the global silicon cycle.


Science Highlights

Manganese: a surprising co-limiting factor of phytoplankton growth in the Southern Ocean

One of the main consequences of this work is that manganese should be included in ocean-climate models, more particularly to improve the accuracy of their predictions in this area.