Inference about rates of thorium and particle cycling in the ocean water column

Insoluble thorium (Th) isotopes are particle reactive while their radioactive parents are fairly soluble. This difference of behaviour has allowed chemical oceanographers to use Th isotopes to develop understanding about the scavenging of particle reactive elements and the cycling of particles in the water column. However, many prior models rely on numerous assumptions. Among these assumptions is vertical uniformity of the rate parameters governing sorption reactions and particle processes in the mesopelagic zone and in the deeper regions of the water column (Th adsorption and desorption, particle remineralization and settling speed, etc.).

In this work, Paul Lerner and co-authors (2016, see reference below) use Th and particle data collected at station GT11-22 of the GEOTRACES North Atlantic transect (section GA03) in order to test two models of Th and particle cycling: a conventional one that assumes uniform rate parameters and another one that allows the rate parameters to vary with depth. They show that the second model leads to a significantly better fit to the data, thereby challenging the assumption of parameter uniformity in the conventional model. Moreover, by combining the second model with the data, they diagnose the various terms in the depth-dependent Th isotope budgets at GT11-22, showing in particular that the behaviour of 230Th is dominated by a balance between adsorption and desorption over most of the water column.

16 Lernerl
Figure: Inversion of radiochemical and particle data for station GT11-22 of section GA03 (19º26’ N, 29º 22’ W). The data used include measurements of dissolved and particulate 228,230,234Th, 228Ra, particle concentration, and observational estimates of 234,238U. Panel (a) shows the budget of dissolved 230Th (left box) and particulate 230Th (right box) in terms of vertical averages (dpm m-3 yr-1) along the water column (below 125 m). The numbers are estimated fluxes and their estimated errors. Panels (b) and (c) show the vertical distribution of the 230Th fluxes.


Lerner, P., Marchal, O., Lam, P. J., Anderson, R. F., Buesseler, K., Charette, M. A., Edwards, R. L., Hayes, C. T., Huang, K-F., Lu, Ya., Robinson, L F., Solow, A. (2016). Testing models of thorium and particle cycling in the ocean using data from station GT11-22 of the U.S. GEOTRACES North Atlantic section. Deep Sea Research Part I: Oceanographic Research Papers, 113, 57–79. doi:10.1016/j.dsr.2016.03.008



Latest highlights

Science Highlights

Controls of cadmium-phosphate systematic unraveled by Neural Networks and Ocean Circulation Inverse Model

Roshan and DeVries explore the similarities and contrasts between oceanic cadmium and phosphate cycles using an Artificial Neural Network mapping technique and Ocean Circulation Inverse Model.


Science Highlights

Retreat of large marine-terminating glaciers may increase iron supply to surface waters

The findings demonstrate that glacial retreat and loss of ice-shelves may potentially result in increases in dissolved Fe supply to surface waters downstream of large marine terminating glaciers in future.


Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of two increase over previous estimates having important implications for the global silicon cycle.


Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of neodymium isotopes as a useful tracer of ocean circulation.