Important warning about the uncertainties affecting results of dissolved iron concentration measurements in seawater using flow-injection with chemiluminescence detection

Flow-Injection with Chemiluminescence (FI-CL) is a procedure commonly applied in the framework of the GEOTRACES cruises because of its portability and hence suitability for shipboard deployment.

Following the Guide for Uncertainty Measurement (GUM) approach, Floor and colleagues propose dedicated mathematical equations allowing the estimation of measurement uncertainties. They apply their model to estimate combined uncertainties obtained for analyses of seawater reference materials (SAFe and GEOTRACES).

This thorough and rigorous examination shows that the final uncertainty of the measurement results using FI-CL in the present protocol configuration cannot be better than 10–15% for seawater samples containing 0.5–1 nmol/kg of dissolved iron (Fe).

This uncertainty might be larger at sea, under more challenging conditions. The most influential sources of uncertainty are the uncertainty on the calibration slope and the lack of stability during the analytical sequence, see figures below).

Authors clearly consider that uncertainty estimations based on the intensity repeatability alone, as is often done in FI-CL studies, is not a realistic estimation of the overall uncertainty of the measurement procedure.

16 Floor l
Figures: Combined uncertainty budget estimated for measurements corresponding to signal peak height integration (left, rel. U = 12%, k = 2)
and to signal peak area integration (right, rel. U = 10%, k = 2). Click here to download the figures.

Reference:

Floor, G. H., Clough, R., Lohan, M. C., Ussher, S. J., Worsfold, P. J. and Quétel, C. R. (2015), Combined uncertainty estimation for the determination of the dissolved iron amount content in seawater using flow injection with chemiluminescence detection. Limnol. Oceanogr. Methods, 13: 673–686. doi:10.1002/lom3.10057

Latest highlights

Substantial trace metal input from the 2022 Hunga Tonga-Hunga Ha’apai eruption into the South Pacific Ocean

Zhang and co-workers investigate the impact of the 2022 eruption on the biogeochemistry of the South Pacific Gyre.

Lead isotopes, reversible scavenging and ventilation processes in the South Atlantic Ocean

Olivelli and co-authors present seawater lead concentrations and lead isotopes for 10 depth profiles collected in the South Atlantic Ocean.

Iron limitation also affects the twilight zone

Li and co-workers established the distribution and uptake of siderophores along the Pacific meridional section (GP15 GEOTRACES cruise)…

Long distance dissolved iron transport in the North-East Pacific revealed by multiple tracers and an ocean circulation model

Sieber and co-authors have made extensive use of the multi-tracer approach, coupled to an oceanic circulation model…

Rechercher