Icebergs; a huge but highly variable source of iron to the ocean

Icebergs have been speculated to constitute one of the largest fluxes of iron (Fe) into the polar oceans since the 1930s and thus recent increases in ice discharge around the world could potentially change Fe availability in the ocean. But how much Fe is in an iceberg? As part of an international collaboration involving several cruises over the past 5 years including the GEOTRACES Fram Strait GN05 section Hopwood et al., (2019, see reference below) report the concentrations of Fe in ice from over 10 glaciated regions around the world. The global mean iceberg Fe content is found to be similar to, or slightly higher than, limited earlier estimates. However, a critical insight is the highly uneven distribution of this Fe with the ‘dirtiest’ 4% of samples collected accounting for over 90% of the cumulative Fe. Investigating how these ‘dirty’ layers are formed and their fate in the ocean is therefore essential to determining the significance of icebergs for marine primary production.

19 Hopwood

Figure: Ice from around the world is found to have a highly variable total dissolvable Fe content ranging from 2 nM to 2 mM.

Reference:

Mark J. Hopwood, Dustin Carroll, Juan Höfer, Eric P. Achterberg, Lorenz Meire, Frédéric A. C. Le Moigne, Lennart T. Bach, Charlotte Eich, David A. Sutherland & Humberto E. González, (2019) High variability is evident even within individual geographic regions. Reference: Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export, Nature Communications, 10, 5261 DOI: https://doi.org/10.1038/s41467-019-13231-0

Latest highlights

North-South radium-228 section in the Pacific Ocean

Moore and colleagues present results from radium-228 along the U.S. GEOTRACES Pacific Meridional Transect (GP15).

Strong lithogenic imprints in the Indian Ocean waters

Ueki and co-authors reported the first sectional distributions of zirconium, hafnium and niobium along a north-south track in the Indian Ocean.

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

A dynamic iron cycle in Peru

Gu and colleagues explore the temporal variation of iron over 11 cruises along the Peruvian shelf.

Rechercher