How iron isotopes offer a new window on the oceanic biogeochemical cycling of iron

Two process studies (2008 and 2012) designed to study temporal changes in the biogeochemical cycling of iron (Fe), provide in situ results for dissolved and particulate Fe (DFe and PFe) cycling during the annual spring bloom.

These field data have been complemented by a shipboard 700-L mesocosm incubation experiment. Later, a conceptual model helps figuring out the key chemical and biological processes involved in Fe isotope fractionation.

This works demonstrates that DFe is isotopically lighter than PFe at the beginning of the spring, likely reflecting the reduction of PFe by photochemistry and bacteria-mediated reduction processes. As the bloom develops, DFe within the surface mixed layer becomes isotopically heavier, consistent with the preferential uptake of light iron by phytoplankton while scavenging appears to play a minor role in fractionating Fe.

15 Ellwood l
Figure. This figure shows the increase in chlorophyll concentration across three different stages of the subtropical phytoplankton bloom (upper panels), along with depth profiles for dissolved iron and nitrate (middle panels), and the iron isotope composition of dissolved and particule iron (lower panels). Disssolved iron (DFe) is isotopically lighter (negative values) than particulate iron (PFe) at the beginning of the spring (stage I). As the bloom develops, DFe within the surface mixed layer becomes isotopically heavier (more positive values), consistent with the preferential uptake of light iron by phytoplankton. Click here to view the image larger.


Ellwood, M. J., Hutchins, D. A., Lohan, M. C., Milne, A., Nasemann, P., Nodder, S. D., Sander, S.G., Strzepek, R., Wilhelm, S.W., Boyd, P. W. (2014). Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proceedings of the National Academy of Sciences of the United States of America, 112(1), E15–20. doi:10.1073/pnas.1421576112. Click here to access the paper.

Latest highlights

Science Highlights

Decline of the anthropogenic lead imprint to the ocean confirmed by data from the South West Atlantic Ocean

This study reveals that the mean lead concentrations in the surface waters of the western South Atlantic Ocean decreased by 34 % between the 1990s and 2011.


Science Highlights

Irradiance-normalized non-photochemical quenching (NPQ): a new proxy of iron stress for phytoplankton

Ryan-Keogh and his colleagues used NPQ to fingerprint the photo-physiological response of phytoplankton to their environment.


Science Highlights

Exhaustive modelling study of the oceanic neodymium parameters

The conclusion of this study reinforces the important role of the solid particles in driving the neodymium oceanic cycle.


Science Highlights

Dissolved manganese distribution in the Arabian Sea reveals many variable triggers

Analysis of dissolved manganese on samples collected on GEOTRACES cruises allowed Singh and colleagues to establish its basin-wide distribution in the Arabian Sea.