Helium-3 plumes in the deep Indian Ocean confirm hydrothermal activity

Thanks to samples collected as part of the Japanese GEOTRACES cruise in 2009 – 2010, along section GI04, Takahata and co-workers (2018, see reference below) identified a maximum helium-3 ratios value (δ3He >14%) at mid-depth (2000 – 3000 m) in the northern part (north of 30°S) of the central Indian Ocean, whereas lower ratio was found in the southern part at the same depth. These values identify an hydrothermal helium-3 plume originating from the Central Indian Ridge around 20°S flowing eastward from the ridge as previously reported in WOCE cruises. Another hydrothermal source of helium-3 is observed in the Gulf of Aden, also helping to constrain the deep circulation off the North East African coast.

18 Takahata
Figure: Vertical distribution of excess helium-3 (3He) along 70˚E of the central Indian Ocean. Two hydrothermal plumes are identified at mid-depth; one is from the Central Indian Ridge and the other from Gulf of Aden. Click here to view it larger.

Reference:

Takahata, N., Shirai, K., Ohmori, K., Obata, H., Gamo, T., & Sano, Y. (2018). Distribution of helium-3 plumes and deep-sea circulation in the central Indian Ocean. Terrestrial, Atmospheric and Oceanic Sciences, 29(3), 331–340. http://doi.org/10.3319/TAO.2017.10.21.02

Latest highlights

Science Highlights

Specific features characterize the dissolved iron distribution in the North Western Indian Ocean

Venkatesh Chinni and Sunil Kumar Singh propose dissolved iron profiles along two meridional transects realized during spring and fall seasons between the Arabian Sea and the sub-tropical western Indian Ocean…

07.01.2022

Science Highlights

Anthropogenic aerosol has become a dominant source of zinc in the deep water of the Northern South China Sea

Liao and colleagues determined zinc concentrations and isotope compositions in sinking particles collected in the Northern South China Sea…

24.11.2021

Science Highlights

An updated global ocean chromium biogeochemical cycle

Janssen and co-authors present an exhaustive compilation of ocean chromium data…

Science Highlights

Mercury stable isotopes constrain atmospheric pathways to the ocean

The study’s results hold promise that the implementation of anti-pollution measures under the Minamata Convention will likely result in a faster decrease of oceanic mercury levels than previously thought.

18.11.2021

Rechercher