Helium-3 plumes in the deep Indian Ocean confirm hydrothermal activity

Thanks to samples collected as part of the Japanese GEOTRACES cruise in 2009 – 2010, along section GI04, Takahata and co-workers (2018, see reference below) identified a maximum helium-3 ratios value (δ3He >14%) at mid-depth (2000 – 3000 m) in the northern part (north of 30°S) of the central Indian Ocean, whereas lower ratio was found in the southern part at the same depth. These values identify an hydrothermal helium-3 plume originating from the Central Indian Ridge around 20°S flowing eastward from the ridge as previously reported in WOCE cruises. Another hydrothermal source of helium-3 is observed in the Gulf of Aden, also helping to constrain the deep circulation off the North East African coast.

18 Takahata
Figure: Vertical distribution of excess helium-3 (3He) along 70˚E of the central Indian Ocean. Two hydrothermal plumes are identified at mid-depth; one is from the Central Indian Ridge and the other from Gulf of Aden. Click here to view it larger.

Reference:

Takahata, N., Shirai, K., Ohmori, K., Obata, H., Gamo, T., & Sano, Y. (2018). Distribution of helium-3 plumes and deep-sea circulation in the central Indian Ocean. Terrestrial, Atmospheric and Oceanic Sciences, 29(3), 331–340. http://doi.org/10.3319/TAO.2017.10.21.02

Latest highlights

Science Highlights

Spatial and temporal variability of bioactive trace metals, speciation and organic metal-binding ligands in the eastern Gulf of Mexico

Mellett and Buck present the concentrations of bioactive trace metals (Fe, Cu, Mn, Zn, Co, Ni, Cd, and Pb), Fe-and Cu-binding organic ligands, and electroactive Fe-binding humic substances in the eastern Gulf of Mexico.

03.03.2021

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean.

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Rechercher