Gulf stream eddies are fertilizing the Western Atlantic Ocean

Tim Conway and co-authors (2018, see reference below) show that Gulf Steam eddies can provide an extra supply of iron, and nutrients such as phosphate and nitrate to the iron-starved Western Atlantic Ocean. Gulf stream eddies form when the northward fast-flowing Gulf Stream meanders and pinches off coastal water, spinning these ‘rings’ out into the ocean. This coastal water is rich in iron. The authors used satellite and ocean datasets to show that these eddies may be just as important than dust in supplying iron to this area of the ocean!

18 Conway lFigure:  Cruise track (left) and dissolved iron (Fe) concentrations (right) from a North Atlantic GEOTRACES dataset (GA03). The northward flowing Gulf Stream (labelled GS) can be clearly picked out as the boundary between the coastal Slope Water which is enriched in Fe, and the open gyre which is Fe-depleted. A gulf steam eddy (labelled) was serendipitously sampled on the cruise, and can be seen as carrying a column of water enriched in Fe across the Gulf Stream and out into the gyre. The authors used this chemical dataset, together with satellite data to calculate how much iron eddies carry into the gyre each year. Click here to view the image larger.

Reference:

Conway, T. M., Palter, J. B., & de Souza, G. F. (2018). Gulf Stream rings as a source of iron to the North Atlantic subtropical gyre. Nature Geoscience, 1. http://doi.org/10.1038/s41561-018-0162-0

Latest highlights

MOTES: a new facility designed for trace element sampling in seawater

Zhang and a group of engineers and researchers from Shanghai and Qingdao are presenting a modular trace element sampling facility.

A thorough estimate of the hydrothermal plumes on neodymium concentration and isotope oceanic cycles

Basak and co-workers investigated the influence of particulate matter on neodymium distributions in the Southern East Pacific Rise Hydrothermal Plume.

What are the drivers of the distributions of cadmium, nickel, zinc, copper and cobalt, manganese and aluminium in the Atlantic Ocean? Two papers are tackling this issue

Chen and co-authors reveal that the distributions of dissolved tracers at depth in the South Atlantic are predominantly controlled by the mixing of North Atlantic Deep Water and waters of Antarctic origin…

Disentangling the sources and transport of iron in the Southern Ocean using a water mass mixing model analysis

Traill and co-workers used an extended optimum multiparameter analysis water‐mass mixing model to determine the interplay between physical and biological processes, and sources/sinks driving dissolved iron distributions…

Rechercher