Are the dissolved iron distributions well represented by the global ocean biogeochemistry models?

Alessandro Tagliabue and co-workers (2016, see reference below) have conducted the first intercomparison of 13 global ocean iron models against the latest datasets emerging from GEOTRACES.

A large disparity in the residence times for iron across the different models was found, which reflects a lack of agreement in how to represent the iron cycle in such models. Many models perform relatively poorly in their representation of the observed trends, but those who reflect the emerging insights into new sources and cycling pathways are better able to reproduce observed features.

A key challenge for the future is to reduce uncertainties in the iron sources and especially the magnitude of scavenging losses.

16 Tagliabue l
Figure: The range of iron residence times (in years) for the global ocean across the thirteen Iron Model Intercomparision Project (FeMIP) models.

Reference:

Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S., Galbraith, E., Misumi, K., Moore, J. K., Ridgwell, A., Sherman, E., Stock, C., Vichi, M., Völker, C.,Yool, A. (2016). How well do global ocean biogeochemistry models simulate dissolved iron distributions? Global Biogeochemical Cycles, 30(2), 149–174. doi:10.1002/2015GB005289

 

Latest highlights

North – South contrasting behavior of dissolved cobalt in the Indian Ocean

Malla and Singh have studied the complex biogeochemical processes of total dissolved cobalt in the Indian Ocean.

The Amazonian mangrove systems accumulate and release dissolved neodymium and hafnium to the oceans

Xu and colleagues investigated the concentrations of rare earth elements in the Amazonian mangrove.

Biological production of ligands influences iron chemistry in hydrothermal systems

For the first time, siderophores and siderophore-producing microbes were determined in 11 distinct hydrothermal plume environments.

Nutrient-OMICS coupling approach reveals unexpected actors for atmospheric carbon sequestration

Sharma and colleagues investigated the role of clay minerals in strengthening the marine biological pump.

Rechercher