Glacial erosion processes suspected to enhance the lability of particulate iron, with a strong influence on the biological demand in the subantarctic waters

As part of the GEOTRACES process study HEOBI (GIpr05) van der Merwe and co-workers (2019, see reference below) conducted a thorough characterization of the labile and refractory iron phases of the particles discharged to the local seawater by the glacial erosion and rivers of Heard and Mc Donald islands (Southern Indian Ocean). They demonstrate that, together with their specific lithology, the fraction of labile iron is significantly larger for particles that experienced glacial weathering processes than for particles of submarine hydrothermal origin. Moreover, they estimate that this labile particulate iron supplied from Heard and to a lesser extent, McDonald Island, is likely the missing iron required meeting biological demand over the plateau, downstream of the islands where traditionally an intense seasonal bloom develops.

Figure: Mixed layer, mean labile fraction of pFe (ratio of labile to refractory pFe) at each of the contrasting regions within the study. Heard Island displayed a significantly higher mean labile fraction compared to all other sites, including the reference station (one-way ANOVA, Games-Howell post hoc, p < 0.01). Furthermore, in addition to the ratio of labile to refractory Fe being higher at Heard Island, the absolute concentration of labile particulate Fe (pFelab) was also significantly higher at Heard Island (115 ± 34 nM, n = 9) compared to McDonald Island (79 ± 20 nM, n = 12) (one-way ANOVA, Games-Howell post hoc, p < 0.01). Standard boxplot median (centre black line), 25th and 75th percentiles (upper and lower box limits) and 95% confidence intervals (inner fences) are indicated. Outliers are shown as open circles and defined as less than 1.5 times the interquartile range. The number of independent data points for the reference, plateau, McDonald and Heard regions were 3, 2, 8 and 9 respectively. Click here to view the figure larger.

Reference :

van der Merwe, P., Wuttig, K., Holmes, T., Trull, T. W., Chase, Z., Townsend, A. T., Goemann, K., Bowie, A. R. (2019). High Lability Fe Particles Sourced From Glacial Erosion Can Meet Previously Unaccounted Biological Demand: Heard Island, Southern Ocean. Frontiers in Marine Science, 6, 332. DOI: https://doi.org/10.3389/fmars.2019.00332

Latest highlights

Science Highlights

Controls of cadmium-phosphate systematic unraveled by Neural Networks and Ocean Circulation Inverse Model

Roshan and DeVries explore the similarities and contrasts between oceanic cadmium and phosphate cycles using an Artificial Neural Network mapping technique and Ocean Circulation Inverse Model.

23.06.2021

Science Highlights

Retreat of large marine-terminating glaciers may increase iron supply to surface waters

The findings demonstrate that glacial retreat and loss of ice-shelves may potentially result in increases in dissolved Fe supply to surface waters downstream of large marine terminating glaciers in future.

31.05.2021

Science Highlights

A new and more quantitative atlas of the deep-sea burial fluxes of major and trace elements

Among other findings, authors find that the new opal flux is roughly a factor of two increase over previous estimates having important implications for the global silicon cycle.

21.05.2021

Science Highlights

Updated compilation of the global continental and marine lithogenic neodymium isotopic measurements

This new compilation and gridded datasets offer a concrete way forward to improve the application of neodymium isotopes as a useful tracer of ocean circulation.

05.05.2021

Rechercher