When GEOTRACES‐based synthesis efforts improve global iron-cycling understanding

Joint Science Highlight with US-Ocean Carbon & Biogeochemistry (US-OCB).

Authors of a recent paper published in Global Biogeochemical Cycles conducted a detailed study of the residence times of total and dissolved iron (Fe) in the upper layers (0-250m) of the global ocean. Using historical (1987-2007) and recent GEOTRACES data, they compiled an impressive data set comprising dissolved, filtered and trap-collected particulate Fe spanning different biogeochemical oceanographic provinces. They also used indirect isotopic approaches to calculate Fe export from the surface layers (e.g., based on thorium-234-uranium-238 disequilibrium). The study revealed that upper ocean residence times of total Fe consistently fell between 10 and 100 days, despite a broad range of total Fe inventories and ocean biogeochemical settings. Conversely, dissolved Fe residences times were longer and more variable, cycling on sub annual to annual time scales. In addition to these detailed insights on upper ocean Fe cycling, these new data sets will help constrain the rate constant for total Fe export, an important term for exploring links between ocean Fe cycling and the global carbon cycle in ocean biogeochemical models.

Figures (from Black et al, 2020): In-situ iron concentration and export (Ftot) estimates from numerous GEOTRACES efforts were combined with prior study results to constrain the residence time of iron in the upper ocean (diagonal lines, lower panel). Broad patterns in iron residence times emerged when contrasting coastal and open regions (pink vs. white), as well as with high and low latitude zones (black vs. white). Despite clear regional differences, however, the majority of residence times for total iron fell into a small range between 10 and 100 days.


Reference:

Black, E. E., Kienast, S. S., Lemaitre, N., Lam, P. J., Anderson, R. F., Planquette, H., Planchon, F., Buesseler, K. O. (2020). Ironing Out Fe Residence Time in the Dynamic Upper Ocean. Global Biogeochemical Cycles, 34(9). DOI: https://doi.org/10.1029/2020GB006592

Latest highlights

Science Highlights

Trace metal quotas in small flagellates: diatoms are challenged!

Sofen and colleagues found that in natural plankton assemblages and in culture, small flagellates operated at the lower range of iron quotas.

14.09.2022

Science Highlights

A vivid picture of particle distribution and sources in the Arctic Ocean

Extensive description of particle concentrations and chlorophyll-a fluorescence distribution along Arctic GEOTRACES sections.

08.09.2022

Science Highlights

The Tonga arc, an iron boundary in the South West Pacific Ocean

As part of the TONGA GEOTRACES process study, Tilliette and colleagues identified high dissolved iron concentrations in the west of the Tonga arc.

31.08.2022

Science Highlights

Dominance of the benthic flux of rare earth elements on continental shelves

Deng and his colleagues focus on one of the largest land–ocean interfaces in Asia, the Changjiang River–East China Sea system.

30.08.2022

Rechercher