When GEOTRACES‐based synthesis efforts improve global iron-cycling understanding

Joint Science Highlight with US-Ocean Carbon & Biogeochemistry (US-OCB).

Authors of a recent paper published in Global Biogeochemical Cycles conducted a detailed study of the residence times of total and dissolved iron (Fe) in the upper layers (0-250m) of the global ocean. Using historical (1987-2007) and recent GEOTRACES data, they compiled an impressive data set comprising dissolved, filtered and trap-collected particulate Fe spanning different biogeochemical oceanographic provinces. They also used indirect isotopic approaches to calculate Fe export from the surface layers (e.g., based on thorium-234-uranium-238 disequilibrium). The study revealed that upper ocean residence times of total Fe consistently fell between 10 and 100 days, despite a broad range of total Fe inventories and ocean biogeochemical settings. Conversely, dissolved Fe residences times were longer and more variable, cycling on sub annual to annual time scales. In addition to these detailed insights on upper ocean Fe cycling, these new data sets will help constrain the rate constant for total Fe export, an important term for exploring links between ocean Fe cycling and the global carbon cycle in ocean biogeochemical models.

Figures (from Black et al, 2020): In-situ iron concentration and export (Ftot) estimates from numerous GEOTRACES efforts were combined with prior study results to constrain the residence time of iron in the upper ocean (diagonal lines, lower panel). Broad patterns in iron residence times emerged when contrasting coastal and open regions (pink vs. white), as well as with high and low latitude zones (black vs. white). Despite clear regional differences, however, the majority of residence times for total iron fell into a small range between 10 and 100 days.


Reference:

Black, E. E., Kienast, S. S., Lemaitre, N., Lam, P. J., Anderson, R. F., Planquette, H., Planchon, F., Buesseler, K. O. (2020). Ironing Out Fe Residence Time in the Dynamic Upper Ocean. Global Biogeochemical Cycles, 34(9). DOI: https://doi.org/10.1029/2020GB006592

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Rechercher