When GEOTRACES‐based synthesis efforts improve global iron-cycling understanding

Joint Science Highlight with US-Ocean Carbon & Biogeochemistry (US-OCB).

Authors of a recent paper published in Global Biogeochemical Cycles conducted a detailed study of the residence times of total and dissolved iron (Fe) in the upper layers (0-250m) of the global ocean. Using historical (1987-2007) and recent GEOTRACES data, they compiled an impressive data set comprising dissolved, filtered and trap-collected particulate Fe spanning different biogeochemical oceanographic provinces. They also used indirect isotopic approaches to calculate Fe export from the surface layers (e.g., based on thorium-234-uranium-238 disequilibrium). The study revealed that upper ocean residence times of total Fe consistently fell between 10 and 100 days, despite a broad range of total Fe inventories and ocean biogeochemical settings. Conversely, dissolved Fe residences times were longer and more variable, cycling on sub annual to annual time scales. In addition to these detailed insights on upper ocean Fe cycling, these new data sets will help constrain the rate constant for total Fe export, an important term for exploring links between ocean Fe cycling and the global carbon cycle in ocean biogeochemical models.

Figures (from Black et al, 2020): In-situ iron concentration and export (Ftot) estimates from numerous GEOTRACES efforts were combined with prior study results to constrain the residence time of iron in the upper ocean (diagonal lines, lower panel). Broad patterns in iron residence times emerged when contrasting coastal and open regions (pink vs. white), as well as with high and low latitude zones (black vs. white). Despite clear regional differences, however, the majority of residence times for total iron fell into a small range between 10 and 100 days.


Reference:

Black, E. E., Kienast, S. S., Lemaitre, N., Lam, P. J., Anderson, R. F., Planquette, H., Planchon, F., Buesseler, K. O. (2020). Ironing Out Fe Residence Time in the Dynamic Upper Ocean. Global Biogeochemical Cycles, 34(9). DOI: https://doi.org/10.1029/2020GB006592

Latest highlights

Science Highlights

The Arctic Ocean is a net source of micronutrients toward the North Atlantic through the gateway of Fram Strait

They present a flux budget for micronutrient exchange between the Arctic and the North Atlantic Ocean.

18.05.2022

Science Highlights

A better insight into parameters that control particle flux in the ocean

They compiled full ocean-depth size-fractionated particle concentration and composition data from three recent U.S. GEOTRACES cruises.

10.05.2022

Science Highlights

Confrontation of two models to constrain the hydrothermal iron contribution to the Southern Ocean export production

Tagliabue and his co-workers compare the hydrothermal dissolved iron simulated by both models.

21.04.2022

Science Highlights

North African dust is an important (but not dominant) source of iron to the Gulf of Mexico

They have combined new GEOTRACES compliant data to estimate how important North African dust could be as a source of iron to the Gulf of Mexico.

19.04.2022

Rechercher