Drawing the future of phytoplankton in a changing ocean

Phytoplankton development is strongly linked to the dissolved iron availability in the surface waters. Iron’s behavior is sensitive to warming, stratification, acidification and de-oxygenation. In a changing ocean, these processes in addition to nutrient co-limitation interactions with iron biogeochemistry will all strongly influence phytoplankton dynamics. This paper establishes the potential future shifts in multiple facets of iron biogeochemistry, from cellular physiology to ocean circulation. Possible impacts of these multiple changes on diatoms and trichodesmium are illustrated in the figure below. This work warns us on the urgent need to improve our present knowledge of the micronutrient cycle forcing, in order to better predict their future behaviors.

17 Hutchins
Figure: Interactive influences of the changing ocean iron cycle on diatoms and nitrogen-fixing cyanobacteria. Iron biogeochemistry will respond to global change-related warming (red), increased light (yellow), acidification (black), loss of oxygen (green), and lowered inputs of the nutrients nitrate (white), silicate (grey) and phosphate (blue). This will have direct consequences for the growth and physiology of both phytoplankton groups, as well as indirect effects on critical resource supply ratios (boxes). Important components of the marine iron cycle responding to environmental change include inputs from dust, complexation by organic ligands, redox chemistry, and biological availability (orange). Click here to view the figure larger. (adapted from Hutchins and Boyd 2016, with thanks to J. Brown for graphics)


Hutchins, D. A., & Boyd, P. W. (2016). Marine phytoplankton and the changing ocean iron cycle. Nature Climate Change, 6(12), 1072–1079. DOI: 10.1038/nclimate3147

Latest highlights

Science Highlights

Dust deposition rates extracted from a data-assimilation model of the aluminium oceanic cycle

Xu and Weber developed a data-assimilation model of the aluminum oceanic cycle


Science Highlights

Intense benthic nepheloid layers in the Northwest Atlantic Ocean lead to unexpected distributions of dissolved and particulate thorium-230 and protactinium-231

Chen and colleagues explore the behaviour of thorium-230 and protactinium-231 in the benthic nepheloid layers…

Science Highlights

Quantifying the weathered fluxes to the ocean is far from over: the overlooked role of rock coast erosion

This study reveals that cliff derived sediment supply is only three times less than the solid discharge of rivers for Europe.


Science Highlights

Contrasting distributions of dissolved manganese, nickel, cadmium and zinc in the Mediterranean Sea

Extensive trace metal clean sampling during the Dutch GEOTRACES cruise in the Mediterranean Sea allowed Middag and his colleagues to establish the basin scale distribution of these trace metals.