Drawing the future of phytoplankton in a changing ocean

Phytoplankton development is strongly linked to the dissolved iron availability in the surface waters. Iron’s behavior is sensitive to warming, stratification, acidification and de-oxygenation. In a changing ocean, these processes in addition to nutrient co-limitation interactions with iron biogeochemistry will all strongly influence phytoplankton dynamics. This paper establishes the potential future shifts in multiple facets of iron biogeochemistry, from cellular physiology to ocean circulation. Possible impacts of these multiple changes on diatoms and trichodesmium are illustrated in the figure below. This work warns us on the urgent need to improve our present knowledge of the micronutrient cycle forcing, in order to better predict their future behaviors.


17 Hutchins
Figure: Interactive influences of the changing ocean iron cycle on diatoms and nitrogen-fixing cyanobacteria. Iron biogeochemistry will respond to global change-related warming (red), increased light (yellow), acidification (black), loss of oxygen (green), and lowered inputs of the nutrients nitrate (white), silicate (grey) and phosphate (blue). This will have direct consequences for the growth and physiology of both phytoplankton groups, as well as indirect effects on critical resource supply ratios (boxes). Important components of the marine iron cycle responding to environmental change include inputs from dust, complexation by organic ligands, redox chemistry, and biological availability (orange). Click here to view the figure larger. (adapted from Hutchins and Boyd 2016, with thanks to J. Brown for graphics)

Reference:

Hutchins, D. A., & Boyd, P. W. (2016). Marine phytoplankton and the changing ocean iron cycle. Nature Climate Change, 6(12), 1072–1079. DOI: 10.1038/nclimate3147

Latest highlights

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Science Highlights

Isopycnal mixing controls protactinium and thorium distributions in the Pacific Southern Ocean

Pavia and co-workers determined the physical and chemical speciation as well as the vertical distribution of Protactinium-231 and Thorium-230 at 12 stations across the Southern Pacific Antarctic Circumpolar Current…

13.12.2020

Rechercher