Estimating Atmospheric Trace Element Deposition Over the Global Ocean

Atmospheric input of trace element micronutrients to the oceans is difficult to determine, as even with collection of high-quality aerosol chemical concentrations, such data by themselves cannot yield deposition rates. To transform these concentrations into rates, a method of determining flux by applying an appropriate deposition velocity is required. A recently developed method based on the natural radionuclide beryllium-7 (7Be, T1/2 = 53.3 d) has provided a means to estimate the bulk (wet + dry) deposition velocity (Vb) required for this calculation.

Kadko and co-workers (2020, see reference below) further developed the relationship between the bulk deposition velocities calculated from 7Be data and rainfall rate  (Vb = R•S•ρ + Vd ), where Vb should be linearly related to R (Rain rate, m/y), with a slope of S•ρ and an intercept of Vd (dry deposition velocity, m/y). S is the scavenging ratio which is the effectiveness by which aerosols are scavenged by precipitation and  ρ is the density conversion.  Water column (7Be inventories) and aerosol 7Be concentrations collected during the 2018 US GEOTRACES Pacific Meridional Transect (PMT, GP15, which passed through a substantial gradient in rainfall rate) together with similar data from other ocean basins were used to derive a global relationship between rain rate (m/y) and bulk depositional velocity (m/d), such that Vb = (999 ± 96 x Rainfall rate) + 1040 ±136 (r2=0.81). Thus given a global rain product (Rainfall data were derived from the Global Precipitation Climatology Project (GPCP), a means to estimate deposition velocities based on rainfall is provided (see figure). The intercept of 1040m/d is consistent with the value of Vd commonly assumed in the literature.

Figure: The 7Be‐derived Vb plotted against rainfall rate (from the GPCP data set) for the PMT cruise (black circles); the EPZT (open circles, Kadko et al., 2020); Bermuda (diamond, Kadko et al., 2015); the N. Atlantic (black square, Shelley et al, 2017) and the Arctic (open square, Kadko et al., 2016, 2019). The upper and lower 95% confidence intervals (dashed lines) around the linear regression trend line are shown.


Kadko, D., W.M. Landing, and R.U. Shelley. (2015). A novel tracer technique to quantify the atmospheric flux of trace elements to remote ocean regions. J. Geophys. Res: Oceans 120, 848-858, DOI:

Kadko, D., Galfond, B., Landing, W. M., and Shelley, R. U. (2016). Determining the pathways, fate, and flux of atmospherically derived trace elements in the Arctic Ocean/ice system. Mar. Chem., 182, 38-50. DOI:

Kadko D., A. Aguilar-Islas, C. Bolt, C. Buck, Jessica N Fitzsimmons, L.T Jensen, W. M Landing, C. M. Marsay, R. Rember, A.M. Shiller, L. M. Whitmore, R. F. Anderson. (2019). The residence times of trace elements determined in the surface Arctic Ocean during the 2015 US Arctic GEOTRACES expedition. Mar. Chem. 208, 56-69. DOI:

Kadko, D., W.M. Landing and C.S. Buck (2020). Quantifying atmospheric trace element deposition over the ocean on a global scale with satellite rainfall products. GRL. DOI:

Shelley, R. U., Roca-Martí, M., Castrillejo, M., Masqué, P., Landing, W. M., Planquette, H., & Sarthou, G. (2017). Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean (> 40° N; GEOVIDE, GEOTRACES GA01) during spring 2014. Deep Sea Research Part I: Oceanographic Research Papers, 119, 34-49. DOI:

Latest highlights

Science Highlights

The Arctic Ocean is a net source of micronutrients toward the North Atlantic through the gateway of Fram Strait

They present a flux budget for micronutrient exchange between the Arctic and the North Atlantic Ocean.


Science Highlights

A better insight into parameters that control particle flux in the ocean

They compiled full ocean-depth size-fractionated particle concentration and composition data from three recent U.S. GEOTRACES cruises.


Science Highlights

Confrontation of two models to constrain the hydrothermal iron contribution to the Southern Ocean export production

Tagliabue and his co-workers compare the hydrothermal dissolved iron simulated by both models.


Science Highlights

North African dust is an important (but not dominant) source of iron to the Gulf of Mexico

They have combined new GEOTRACES compliant data to estimate how important North African dust could be as a source of iron to the Gulf of Mexico.