Dissolved iron isotopes reveal that distinct processes are controlling this micronutrient distribution in the ocean

Abadie and co-workers propose new dissolved iron concentration and isotopic composition distributions (DFe and ICFe respectively) along the Bonus-Goodhope IPY section (GIPY4), in the Atlantic sector of the Southern Ocean. DFe vertical profiles display a continuous increase with depth (see figure B), classically interpreted as due to biological uptake at the surface followed by remineralization at depth. However, heterogeneous profiles of ICFe (see figure B) suggest a more complicated story driven by distinct processes, discussed here for the first time. Indeed, the authors demonstrate that in the intermediate waters, DFe primarily originates from remineralization of organic matter and the redistribution of this regenerated DFe through mixing. Moreover it is also due to horizontal advection of DFe released by reducing sediments of the nearby South African coast. The scheme changes deeper, where abiotic processes are dominating the DFe distribution as for example non-reductive release of DFe from lithogenic particles. This last process would add an additional source to the global oceanic DFe budget, which should be considered in the biogeochemical models. In addition, it suggests that the oceanic DFe budget could be more sensitive than previously thought to continental erosion, particle transport, and dissolved/particle interactions.

17 Lacan l2

Figure: (A) Position of the 5 stations sampled for iron isotopes during the Bonus-Goodhope IPY GEOTRACES cruise; (B) Examples of profiles for dissolved iron concentration (DFe) and dissolved iron isotopic composition (expressed by δ56DFe) obtained in one of the 5 stations sampled (other stations show similar patterns); Iron isotopes show a very sharp minimum in intermediate depths (i.e. between about 200 and 1500 m below the surface). The contrast between these intermediate depths and the deep ocean (3000-5000 m) demonstrates that two different processes dominate dissolved iron sources in the ocean at these two levels. (C) Dissolved iron isotopic composition (δ56DFe) along the Bonus-Goodhope section. Negative values (in cold colours, blue, green) indicate iron that is naturally enriched in light isotopes, while high values (in warm colours, red, orange) indicate heavy iron isotopes enrichment. Click here to view the figure larger.


Abadie, C., Lacan, F., Radic, A., Pradoux, C., Poitrasson F. (2017) Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean, PNAS, DOI: 10.1073/pnas.1603107114

Latest highlights

Science Highlights

Rare Earth Elements and neodymium isotopes as tracers in the Mediterranean Sea

Garcia-Solsona and co-workers analysed 9 seawater stations around the central Mediterranean Sea…


Science Highlights

A new model simulates the speciation and dispersion of hydrothermal iron

Roshan and collaborators present new observations of dissolved iron and its physical speciation in the South Pacific


Science Highlights

Mechanisms driving biological CO2 drawdown in the Subarctic Pacific unraveled

Nishioka and co-authors compiled comprehensive data sets of iron and macronutrients covering the whole subarctic Pacific…


Science Highlights

The biogeochemical ventures of dissolved iron and manganese across the Arctic Ocean

The spatial distributions and biogeochemical cycling of dissolved Fe (dFe) and dissolved manganese (dMn) across the Arctic Ocean were established during summer and fall 2015. The Canadian GEOTRACES transect extended from the Canada Basin (CB) to the Labrador Sea (LS) via the Canadian Arctic Archipelago (CAA). The surface, subsurface and deep water distributions for both […]